Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
8
всего попыток:
14
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?
Задачу решили:
13
всего попыток:
30
Суперферзь отличается от обычного тем, что он может ходить и как конь. Сколькими способами можно расствить 14 суперферзей на шахматной доске размера 14 на 14 таким образом, чтобы ни один суперферзь не находился под ударом другого суперферзя? Позиции, получающиеся друг от друга поворотом или зеркальным отображением, считаются разными.
Задачу решили:
1
всего попыток:
12
Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. Число N - наименьшее число кусков, на которое ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями. Сколько существует различных разбиений пирога на таких N кусков? Замечания. 1. Нужно считать только разбиения на куски, кратные 1/(7*8*9) части пирога. 2. Если из какого-то разбиения можно скомпоновать нужные части несколькими способами, то это разбиение всё равно считается только один раз.
Задачу решили:
0
всего попыток:
1
Сколькими различными способами можно разрезать шестиугольник из 54-х одинаковых равносторонних треугольников по линиям сетки на три конгруэнтных n–угольника? Разрезания, являющиеся симметрическими отображениями друг друга, считать только один раз. Т.е., нужно найти количество «неконгруэнтных разрезаний».
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|