img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 14
всего попыток: 14
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Наименьшее число единичных кубиков, необходимое, чтобы закрыть поверхность прямоугольного параллелепипеда 3х2х1, равно двадцати двум.



Чтобы добавить второй слой кубиков, закрывающих поверхность полученного тела, понадобится сорок шесть кубиков; для третьего слоя необходимо семьдесят восемь кубиков, а для четвертого - сто восемнадцать кубиков.

Первый слой параллелепипеда 5х1х1 также состоит из двадцати двух кубиков; аналогично первый слой в параллелепипедах 5х3х1, 7х2х1 и 11х1х1 состоит из сорока шести кубиков.

Обозначим за C(n) количество параллелепипедов, содержащих n кубиков в одном из своих слоев. Тогда С(22) = 2, С(46) = 4, С(58) = 5, С(82) = 7.

Оказывается, что сумма всех трехзначных n, для которых С(n) = 5, составляет 930.

Найдите сумму всех пятизначных n, для которых C(n) = 500.

(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.