Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
57
Рассмотрим такие диофантовы уравнения: x2-Dy2=1. Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое: 6492-13*1802=1. Легко показать, что для D - полного квадрата решений не существует. Рассмотрим минимальные решения D <= 10: 32 - 2*22=1; 22 - 3*12=1; 92 - 5*42=1; 52 - 6*22=1; 82 - 7*32=1; 32 - 8*12=1; 192 - 10*62=1. Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10. Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.
Задачу решили:
9
всего попыток:
95
Рассмотрим игру «монополия». Игровое поле следующее:
Движение происходит следующим образом: каждый игрок своим ходом кидает два 6-гранных кубика, и сдвигает фишку на число клеток в сумме выпавших на кубиках. Исключением является случай, когда игрок три раза подряд выкидывает дубль (одинаковые числа на кубиках), в таком случае он попадает на клетку тюрьмы (JAIL). Также, если игрок сдвинув фишку попадает на «G2J», то он перемещается в тюрьму. Игрок начинает с клетки GO и каждый ход бросает пару кубиков и свдигает фишку на сумму чисел выпавших на кубиках по часовой. Если бы не было дополнительных правил — ожидаемым было бы, что вероятности попадения на каждую клетку после броска равна 1/40. Но попадания на клетки G2J(Go to jail, отправляйтесь в тюрьму), CC(извещение) и CH(шанс) изменяет это распределение. Также существует правило, согласно которому если игрок выкидывает три раза дубль (одинаковые значения на кубиках), то вместо третьего хода он попадает в тюрьму. Вначале игры все карты CC и CH перетасованы. Когда игрок становится на одну из таких клеток верхняя карта колоды снимается и после использования кладется под низ. В каждой стопке по 16 карт, часть из которых содержит предписания о перемещении на какую-то из клеток карты, остальные нам не важны. Вот эти карты:
Ваша задача определить вероятность закончить ход на каждой из клеток после очередного броска кубиков. Очевидно что вероятность для Jail наибольшая, G2J нулевая. Считается что игрок не задерживается в тюрьме. Пронумеруем все клетки от 0(GO) до 39(H2) и найдем вероятности для каждой клетки. Три макимальные вероятности получаются для клеток JAIL(10), 6.24%; E3(24), 3.18% и GO(0), 3.09%. В какой-то момент вы потеряли кубик и потому решили обходиться для игры монеткой, подкидывая ее три раза и считая что орел - 1, а решка - 2. При этом "дублем" считается выпадения все три раза либо орла, либо решки. Найдите при таком способе игры 5 наиболее популярных клеток и в ответе укажите сумму их номеров.
Задачу решили:
11
всего попыток:
37
Дан список слов в приложении. Среди них есть некоторые слова-анаграммы. То есть пары слов, отличающиеся только порядком букв. Такие как СОСНА и НАСОС. Оказывается, что при некоторой подстановке букв цифрами (одинаковым буквам соответствуют одинаковые цифры, разным - разные), слова пары могут одновременно превратиться в пентагональные числа (представимы как n(3n-1)/2). Найти среди всех таких слов и соответствующих им чисел, наибольшее число.
Задачу решили:
22
всего попыток:
34
В коробке находятся красные и синие шары. Если всего шаров 21, 6 красных и 15 синих, вероятность, взяв наугад два шара, вытащить 2 синих равна ½. Следующее такое сочетание шаров с вероятностью вытащить оба синих шара ½ — 35 красных и 85 синих. Найти все сочетания шаров, таких что всего их в коробке не более 1012. Сколько всего в сумме шаров во всех сочетаниях?
Задачу решили:
12
всего попыток:
13
Игра проводится по следующим правилам. Вначале в коробку кладут два шара - синий и красный. За ход предлагается вынуть наугад один из шаров. Затем вынутый шар возвращается в коробку и вдобавок в коробку кладется два шара красного цвета. Таких ходов делается n. Игра считается выигранной, если количество вынутых синих больше чем вынутых красных. Для n=3 вероятность выиграть равна 5/24. Если игра стоит 1 рубль, то максимальный целый выигрыш, который крупье может предложить, чтобы в среднем выигрывать, 4 рубля. Найдите какой максимальный выигрыш можно предложить для аналогичной игры с 13 ходами.
Задачу решили:
20
всего попыток:
26
Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42. 1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1. Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили:
14
всего попыток:
14
Наименьшее число единичных кубиков, необходимое, чтобы закрыть поверхность прямоугольного параллелепипеда 3х2х1, равно двадцати двум.
(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили:
13
всего попыток:
49
Натуральные числа x, y и z являются последовательными членами арифметической прогрессии. Для каждого n найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решений будет ровно 25. Минимальным таким n является 26880. Найдите сумму всех n для которых ровно 25 решений, среди n меньших 1000000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|