Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
30
У вас есть кубики размера 1x1x1, из них - 6 прозрачные и 90 кубиков имеют в центре красную бусинку. Сколько существует способов размещения кубиков внутри параллелепипеда размером 4x4x6 таких, что во всех рядах по всем трем направлениям находится четное количество бусинок (ноль - также четное число)?
Задачу решили:
4
всего попыток:
12
На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?
Задачу решили:
7
всего попыток:
13
Даны наборы чисел (xn, yn, rn), n=1,...100, задающие окружности с центром в точке с координатами (xn, yn) и радиусом rn. Эти числа выбираются так двухзначные числа состоящие из цифр после запятой в записи числа π, стоящие соответственно для xn - на n и n+1 местах, для yn - на n+2 и n+3 местах, и rn - на n+4 и n+5 местах. Таким образом, x1=14, y1=15, r1=92 и т.д. Найдите количество точек пересечения (включая точки касания) этих окружностей.
Задачу решили:
4
всего попыток:
6
Пусть на координатной плоскости точка O(0,0) - начало координат, а C - точка с координатами (r,r). Например, N(1)=2, и N(4)=60. Найдите N(227).
Задачу решили:
2
всего попыток:
2
В этой задаче мы будем рассматривать треугольники на плоскости со следующими свойствами:
Существует девять таких треугольников с периметром, не превышающим 50. Все они показаны на рисунке A(-4, 3), B(5, 0), C(4, -3)
Задачу решили:
3
всего попыток:
12
Рассмотрим треугольники, длины сторон которых выражаются целыми числами, и, кроме того, градусная мера хотя бы одного из углов — тоже целое число. Ограничимся при этом треугольниками с периметром, не превышающим 108.
Задачу решили:
5
всего попыток:
6
Рассмотрим треугольник ABC с целочисленными сторонами. Пусть k – биссектриса угла ACB, m – касательная в точке C к окружности, описанной вокруг ABC, а прямая n проведена через точку B параллельно m. Прямые k и n пересекаются в точке E, как показано на рисунке: Сколько существует треугольников ABC со сторонами BC ≤AC ≤AB≤ 30000, для которых длина BE оказывается целым числом?
Задачу решили:
4
всего попыток:
4
Фруктовый сад имеет шестиугольную форму, а деревья в саду растут в вершинах треугольной решетки. На рисунке показан план такого сада со стороной n=5: Из центра сада можно увидеть только часть деревьев, поскольку некоторые (они на рисунке обозначены зеленым цветом) заслонены другими, растущими ближе к наблюдателю. Легко подсчитать, что для сада со стороной n=5 количество заслоненных деревьев равно 30.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|