img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 250
всего попыток: 398
Задача опубликована: 22.03.09 14:46
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Arekusux

Найти сумму всех цифр числа 200! (факториал двухсот).

Задачу решили: 237
всего попыток: 367
Задача опубликована: 22.03.09 14:46
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Arekusux

Чему равна сумма цифр числа 21001?

Задачу решили: 23
всего попыток: 79
Задача опубликована: 29.05.09 09:45
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам:

1. во всех отделениях всех корзин разное (ненулевое) количество мячей;

2. во всех корзинах в сумме по отделениям одинаковое количество мячей;

3. количество мячей в корзинах минимально возможное для данного количества корзин.

Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное.

У вас 100 корзин, найти сумму мячей в одной корзине.

Задачу решили: 35
всего попыток: 65
Задача опубликована: 01.06.09 18:55
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: casper

Пусть f(n) для натурального числа n равно количеству различных представлений в виде сумм степеней 2, при этом каждая степень не может использоваться более двух раз. Например, f(10)=5 так как 10=1+1+8=1+1+4+4=1+1+2+2+4=2+4+4=2+8.
Чему равно f(2009)?

Задачу решили: 29
всего попыток: 51
Задача опубликована: 12.06.09 08:27
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Прямоугольная сетка 3 × 2 на рисунке содержит 18 прямоугольников:

 

Определим функцию f(a,b) как число прямоугольников, содержащихся в сетке a × b.

Сколько различных значений принимает f(a,b) при 0<a<1000 и 0<b<1000?

Задачу решили: 6
всего попыток: 16
Задача опубликована: 04.07.09 09:14
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.

Задачу решили: 24
всего попыток: 103
Задача опубликована: 25.07.09 17:06
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Bear (Евгений Бабенко)

Изобретение головоломки, завоевавшей популярность под японским именем "судоку" иногда приписывают Леонарду Эйлеру, написавшем книгу о латинских квадратах. Задача заключается в заполнении цифрами от 1 до 9 пустых клеток в таблице 9x9. При этом в каждой строке, каждом столбце и в каждом малом квадрате 3x3 каждая цифра должна встречаться ровно 1 раз.
На первом рисунке приведены два квадрата. В левом - условие задачи, а в правом - ее решение.

Сколько решений имеет задача на следующем рисунке?

 

Задачу решили: 12
всего попыток: 22
Задача опубликована: 17.08.09 12:45
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Если мы знаем только k членов последовательности, мы не можем однозначно описать следующий ее член с помощью многочленов.
Для примера давайте рассмотрим последовательность кубов натуральных чисел. Она порождается функцией un = n3: 1, 8, 27, 64, 125, 216, ...
Допустим, нам известны только два первых члена последовательности. Руководствуясь принципом "чем проще, тем лучше", мы можем воспользоваться линейной функцией и предсказать, что следующее за 1 и 8 значение будет равно 15. Если мы знаем три члена последовательности, то, пользуясь все тем же принципом простоты, мы можем описать ее квадратичным многочленом.
Обозначим через OP(k, n) n-ый член последовательности, порожденной оптимальным полиномиальным приближением, основанном на знании первых k членов последовательности. Ясно, что значения многочлена OP(k, n) точно совпадут с первыми k членами последовательности, а первым несовпадающим членом (ПНЧ), если есть такой, будет OP(k, k+1); если у многочлена имеется OP(k, n), который при некотором n несовпадает с соответствующим членом последовательности, мы будем называть недостаточным.
Выпишем первые OP для кубической последовательности:
k=1 OP(1, n) = 1 : 1, 1, 1, 1, ...
k=2 OP(2, n) = 7n-6 : 1, 8, 15, ...
k=3 OP(3, n) = 6n2-11n+6 : 1, 8, 27, 58, ...
k=4 OP(4, n) = n31, 8, 27, 64, 125, ...
Ясно, что для кубической последовательности есть только три недостаточных многочлена.  Их ПНЧ показаны в таблице синим цветом. Вычислив сумму ПНЧ для всех нехороших многочленов, получим  1 + 15 + 58 = 74.
Рассмотрим последовательность, заданную следующим многочленом десятой степени:
un  = -n + 2n2 - 3n3 + 4n4 - 5n5 + 6n6 - 7n7 + 8n8 - 9n9 + 10n10
Найдите сумму ПНЧ всех недостаточных многочленов для данной последовательности.

Задачу решили: 11
всего попыток: 30
Задача опубликована: 01.09.09 00:50
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее.

Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.

Задачу решили: 6
всего попыток: 18
Задача опубликована: 10.09.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
баллы: 100

На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243.

Тот же граф можно представить следующей матрицей:

  A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -

Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.

 

Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой
wij =  wji = (69069(i - j)2(i + j))(mod 1000)

Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.