Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
16
Игроку выдается 9 карт и он упорядочивает их по мастям в порядке Пики, Трефы, Бубны, Червы, а внутри масти по старшиству 2, 3,..., 10, В, Д, К, Т. Комбинация называется неубывающей, если младшая карта в следующей масти, не ниже старшей карт в предыдущей масти. Найдите количество неубывающих комбинаций из 9 карт.
Задачу решили:
38
всего попыток:
47
Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что никакие 2 ферзя не бьют друг друга?
Задачу решили:
7
всего попыток:
17
Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).
Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
Задачу решили:
6
всего попыток:
8
Игрок бросает пять шестигранных костей (т.е. кубиков, грани которых пронумерованы от 1 до 6), а затем подсчитывает сумму трех наибольших выпавших значений. D1,D2,D3,D4,D5 = 4,3,6,3,5 Существует ровно 1111 вариантов для пяти шестигранных костей, когда три наибольших выпавших значения дают в сумме 15. А сколько будет вариантов для 18 двенадцатигранных костей (т.е. додекаэдров, грани которых пронумерованы от 1 до 12), когда 10 наибольших выпавших значений в сумме дают полный квадрат?
Задачу решили:
3
всего попыток:
6
Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами: Найдите остаток от деления F(25,35) на 108.
Задачу решили:
5
всего попыток:
7
Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:
Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй. Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда Z(6)=18, Z(10)=964, Z(15)= 360505. Найдите ∑Z(n) для 1 ≤ n ≤ 18.
Задачу решили:
6
всего попыток:
7
В сильно упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH. В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n. Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки. На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)
В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе. Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки. 77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H. Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?
Задачу решили:
9
всего попыток:
17
Ним – это игра, в которой двое участников по очереди берут камни, разложенные на несколько кучек. Каждым ходом игрок должен взять из одной кучки один или несколько камней, но хотя бы один – обязательно! Проигрывает тот, кому камней не досталось, и кто поэтому не может сделать ход. Мы рассмотрим наиболее популярную версию игры с тремя кучками камней. Пусть начальная позиция описывается тройкой чисел (n1,n2,n3), где n1,n2 и n3 - количество камней в каждой из трех кучек.
Например, позиция (0,n,n) – проигрышная для любых n, ибо второй игрок всегда может выравнивать количество камней в двух оставшихся кучках, пока в них что-то остается. По этой же причине позиция (1,2,3) – тоже проигрышная, ибо второй игрок своим ходом всегда может создать позицию вида (0,n,n), например: Первый игрок: (1,2,1) Второй игрок: (1,0,1) Первый игрок: (0,0,1) Второй игрок: (0,0,0) – победа. Подсчитайте, сколько существует проигрышных позиций вида (n,2n,3n), где n – натуральное число, не превышающее 1012.
Задачу решили:
6
всего попыток:
8
Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.
Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43. Найдите миллионное значение n, при котором второй игрок всегда может победить.
Задачу решили:
0
всего попыток:
0
Вообразите бесконечный в оба конца ряд чаш, перенумерованных целыми числами. В некоторых чашах лежат бобы. Разрешается делать ходы следующего вида: взять два боба из одной чаши и разложить их в две соседние. Игра заканчивается, когда сделать ход невозможно. В примере на рисунке в две соседние чаши положили 2 и 3 боба, а остальные чаши оставили пустыми. Как видно, такую игру можно закончить за 8 ходов.
Рассмотрим последовательность целых чисел bi следующего вида: b0 = 0, b1 = 289, b2 = 145 bi = (bi-1 + bi-2 + bi-3) mod 2013, где x mod y означает остаток от деления x на у. Пусть количество бобов в двух соседних чашах определяется числами b1 = 289 и b2 = 145, а остальные чаши в начальном положении пусты. В этом случае игру можно закончить за 3419100 ходов. Подсчитайте, сколько ходов потребуется для завершения игры , если в начальном положении в чашах с номерами от 1 до 1500 лежит b1, b2, ... b1500 бобов, соответственно, а остальные чаши пусты.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|