img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 66
Задача опубликована: 15.03.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На шахматной доске стоят 4 коня на разных клетках одного цвета. За один ход все кони одновременно перемещаются на другую клетку, при этом на одной клетке могут находиться несколько коней. Необходимо собрать всех коней на одной клетке за минимальное число ходов. Какое наибольшее число ходов придется сделать при наихудшем изначальным расположении коней?

Задачу решили: 6
всего попыток: 14
Задача опубликована: 05.04.10 08:00
Прислал: admin img
Источник: Международная олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Начальная конфигурация головоломки Рубика "магические квадратики" выглядит так:

1 2 3 4
8 7 6 5

 Разрешены такие преобразования:

  1. перестановка верхнего и нижнего рядов
  2. циклический сдвиг вправо на один квадрат (при этом левый нижний квадрат перемещается вверх и становится левым верхним)
  3. поворот по часовой стрелке четырех средних квадратов.

Конфигурацией головоломки называется любое положение квадратиков, которое возможно получить при помощи указанных преобразований.

За какое минимальное количество ходов можно гарантированно преобразовать произвольную конфигурацию в начальную.

+ 0
+ЗАДАЧА 305. Блоха-знаток (Игорь Чевдарь)
  
Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.08.10 08:00
Прислал: admin img
Источник: Открытый чемпионат Урала по спортивному прогр...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Блоха запрыгнула на круглый стол для игры в "Что? Где? Когда?" незадолго до начала очередной игры. На секторах стола уже были разложены конверты с вопросами. Блоха решила заранее прочитать все вопросы, чтобы у нее было больше времени подумать над ответами.

Круглый игровой стол поделен на 109 секторов, занумерованных по часовой стрелке числами от 1 до 109. Блоха запрыгнула на первый сектор. С него она может либо перебежать на соседний, либо перепрыгнуть через 2 сектора (например, если стол делится на 12 секторов, то с сектора номер 1 блоха может за одно действие попасть на сектора с номерами 2, 4, 10 и 12). Блоха хочет побывать на каждом секторе ровно 1 раз и вернуться обратно на первый сектор, откуда она спрыгнет и убежит думать над вопросами. Определите, сколькими способами она сможет совершить свое путешествие. Выведите в качестве ответа количество способов по модулю 109+9.

Задачу решили: 37
всего попыток: 59
Задача опубликована: 18.10.10 08:00
Прислал: admin img
Источник: Интернет-олимпиада школьников по информатике ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для передачи сообщений используется алфавит из 32 прописных русских букв (не используется «Ъ»). Все передаваемые слова содержат ровно по 8 букв. Каждое передаваемое слово начинается с одной из четырех букв (К, Л, М, Н). Остальные буквы в каждом слове могут быть любыми из используемого алфавита. Какое количество информации (в битах) несет произвольная фраза из 10 слов, если для ее кодирования использовалось минимальное количество бит в рамках описанных выше правил.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 22.11.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Игроку выдается 9 карт и он упорядочивает их по мастям в порядке Пики, Трефы, Бубны, Червы, а внутри масти по старшиству 2, 3,..., 10, В, Д, К, Т. Комбинация называется неубывающей, если младшая карта в следующей масти, не ниже старшей карт в предыдущей масти. Найдите количество неубывающих комбинаций из 9 карт.

Задачу решили: 38
всего попыток: 47
Задача опубликована: 13.12.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что никакие 2 ферзя не бьют друг друга?

Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Вова и Дима играют в числовую угадайку: Вова задумывает число, а Дима пытается его угадать. После каждой попытки Вова сообщает Диме количество угаданных цифр. Например, Вова задумал число 1234, а Дима предположил, что число равно 2036. Вова сообщает ему, что угадана одна цифра. Действительно, цифра 3 стоит в обоих числах на одном и том же месте. О том, что есть еще цифра 2, которая есть в обоих числах, но на разных позициях, Вова Диме не говорит.
Вчера Вова задумал 5-значное число, и вот как проходила игра:
1) Дима: 90342;  Вова: 2 цифры угаданы
2) Дима: 70794;  Вова: 0 цифр угадано
3) Дима: 39458;  Вова: 2 цифры угаданы
4) Дима: 34109;  Вова: 1 цифра угадана
5) Дима: 51545;  Вова: 2 цифры угаданы
Получив эту информацию, Дима сообразил, что для задуманного числа осталось всего четыре возможности: 31348, 31442, 39345, 39542. Тогда Дима сделал еще один ход:
6) Дима: 12531;  Вова: 1 цифра угадана
и определил загаданное число:  39542, поскольку других вариантов не осталось.
А сегодня игру решили усложнить. Теперь Вова загадал 16-разрядное число. Вот протокол игры:

  Попытка Димы Ответ Вовы: количество угаданных цифр
1 5616185650518293 2
2 3847439647293047 1
3 5855462940810587 3
4 9742855507068353 3
5 4296849643607543 3
6 3174248439465858 1
7 4513559094146117 2
8 7890971548908067 3
9 8157356344118483 1
10 2615250744386899 2
11 8690095851526254 3
12 6375711915077050 1
13 6913859173121360 1
14 6442889055042768 2
15 2321386104303845 0
16 2326509471271448 2
17 5251583379644322 2
18 1748270476758276 3
19 4895722652190306 1
20 3041631117224635 3

Дима долго думал и нашел все оставшиеся варианты. Найдите их и вы, а в качестве ответа укажите их сумму.

Задачу решили: 6
всего попыток: 9
Задача опубликована: 07.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Правильный треугольник со стороной 8 можно разбить на 64 одинаковых правильных треугольника, как показано на рисунке:

Раскрасим теперь то, что получилось, в три цвета: красный, синий и зеленый. Будем считать допустимой такую раскраску, при которых никакие два соседних (имеющих общую сторону) единичных треугольника раскрашены в разные цвета. Треугольники, имеющие общую вершину, но не имеющие общей стороны, не считаются соседними.
Вот пример допустимой раскраски для треугольника со стороной 8:

Обозначим через f(n) число различных допустимых раскрасок для треугольника со стороной n.
Если для получения одной раскраски из другой необходимы преобразования симметрии или повороты, мы будем считать такие раскраски различными.
Тогда f(1)=3, f(2)=24, f(3)=528.
∑f(n)=555 для 1 ≤ n ≤ 3.
Найдите ∑ f(n) для 1 ≤ n ≤ 8.

Задачу решили: 11
всего попыток: 45
Задача опубликована: 13.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Оля и Дима играют в кости.
У Оли шесть костей в форме октаэдра, и грани каждой из них занумерованы числами от 1 до 8.
У Димы четыре кости в форме додекаэдра, и грани каждой из них занумерованы числами от 1 до 12.
В каждом туре игроки бросают все свои кости по одному разу. Побеждает тот, у кого сумма выпавших очков больше. При равенстве фиксируется ничья.
Каково математическое ожидание количества побед Оли после миллиона туров?
Результат округлите вниз до целого.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.