Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
195
Квадрат размером 1024 на 1024 клетки складывается относительно вертикали сначала так, чтобы правый край наложился на левый, а затем относительно горизонтали, чтобы нижний край наложился на верхний. Операция продолжается до тех пор, пока не останется одна клетка. Клетки изначально были пронумерованы числами снизу "змейкой": самый нижний ряд - слева направо, второй ряд - справа налево продолжает нумерацию и так далее до самого верха. Какую клетку нужно отметить, чтобы в результате складывания она оказалась на самом верху?
Задачу решили:
46
всего попыток:
84
Найти сумму всех натуральных чисел меньших миллиона в записи которых во всех системах счисления с основаниями от 2 до 10 нет подряд идущих двух нулей?
Задачу решили:
22
всего попыток:
61
В строке записаны символы A и B в произвольном порядке, длина строки - 100 символов. За один шаг можно переставить любую группу из последовательных символов A или B. За какое минимальное количество перестановок гарантированно можно упорядочить строку так, чтобы сначала были буквы A, а потом B?
Задачу решили:
61
всего попыток:
115
В одной стране, когда население достигло 1 миллиарда, правитель выдал всем жителям порядковые номера от 1 и до 109. В этой стране счастливым считается число 888, поэтому сначала осчастливили тех, у кого номер оказался кратным 888. Затем счастливчиков упорядочили в порядке возрастания номеров и отобрали тех, кто оказался на местах кратных 888. Эту процедуру продолжали до тех пор, пока участников стало меньше 888. Их и объявили суперсчастливчиками. Чему равна сумма изначальных номеров суперсчастливчиков?
Задачу решили:
11
всего попыток:
41
Имеется 100 камней с разными весами от 1 до 100 кг. Сколько существует способов разбиения их на 2 кучи, при которых общий вес первой превосходит, но не более чем в 2 раза, общий вес второй?
Задачу решили:
21
всего попыток:
33
Рассмотрим два треугольника: X(-175,41), Y(-421,-714), Z(574,-645)
На плоскости заданы 20 точек. Их координаты приведены в таблице:
Сколько треугольников с вершинами в данных точках содержат начало координат?
Задачу решили:
8
всего попыток:
42
Группу из 30 студентов нужно разбить на две команды, так чтобы в первой команде было больше студентов, чем во второй, но не более чем в полтора раза. При этом в каждой группе должны оказаться знакомые друг с другом студенты. Знакомство задается матрицей с элементами Aij (1≤i,j≤30), в которой Aij=Aji=1, если студенты с номерами i и j знакомы, и Aij=Aji=0 - если не знакомы. Также известно, что если i+j и i*j одновременно делятся на 3, то Aij=1, остальные элементы равны нулю. Сколько возможно разбиений на команды?
Задачу решили:
26
всего попыток:
42
На рисунке в клетки поля размером 5x5 записаны по спирали последовательно простые числа. Запишите таким же образом, по спирали, последовательно простые числа в клетки поля размером 100x100. Начиная с левого нижнего поля необходимо пройти в правое верхнее поле, двигаться при этом можно только на одну клетку вправо или одну клетку вверх. Найдите такой путь, что сумма чисел в его клетках является максимальной. В ответ введите эту сумму.
Задачу решили:
8
всего попыток:
24
При игре в дартс участники метают три коротких дротика в мишень, разделенную на двадцать равных секторов, которые пронумерованы числами от 1 до 20. Количество заработанных очков зависит от того, куда дротик воткнулся. Попадание дротика за пределами внешнего красно-зеленого кольца не приносит очков. Попадание дротика в черный или желтый сектор внутри этого кольца приносит очки в соответствии с номером сектора. Внешнее красно-зеленое кольцо означает удвоение числа сектора, а внутреннее - утроение. Два концентрических круга в центре мишени образуют "яблочко". Наружный зеленый круг дает 25 очков, а внутренний красный - 50. Он считается двойным (25x2=50). Существует несколько вариантов игры. В самом распространенном из них игроки в начале игры имеют 301 или 501 очко, а затем последовательно вычитают заработанные очки. Выигрывает тот, у кого останется ровно ноль очков. Однако победа засчитывается только в том случае, если последний бросок, сводящий число очков к нулю, был "двойным", то есть попал во внешнее красно-зеленое кольцо или в красное "яблочко". В противном случае, а также когда после серии из трех бросков получается отрицательная сумма очков или единица, вся серия не засчитывается, и счет остается прежним. Положение, при котором участник может завершить игру, называют "чекаут" (англ. checkout). Максимальный чекаут возможен при 170 очках: T20 T20 D25 (два попадания с утроением в сектор 20 и одно попадание в красное яблочко). Есть ровно 11 способов окончить игру при шести очках: D3 Обратите внимание, что серии D1 D2 и D2 D1 считаются различными, поскольку последние броски с удвоением у них различны. Однако комбинации S1 T1 D1 и T1 S1 D1 считаются одинаковыми. Кроме того, мы не учитываем промахи. D3 считается тем же исходом, что и 0 D3 или 0 0 D3.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|