img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 8
Задача опубликована: 24.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дано множество простых чисел, не превышающих 5000:
S = {2, 3, 5, ..., 4999}
Найдите, сколько оно содержит подмножеств, у которых количество элементов нечетно, а сумма элементов является простым числом.
В качестве ответа укажите последние 16 знаков результата.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 28.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество непустых подмножеств множества

{1250250, 2250249, 3250248,... , 2502492, 2502501},

у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.

Задачу решили: 3
всего попыток: 6
Задача опубликована: 09.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами:
1. Каждый разрез представляет собой отрезок, соединяющий отмеченные точки.
2. Разрезы не пересекаются, но могут иметь общие концы, соответствующие отмеченным точкам.
3. Мы будем продолжать делать разрезы, пока не останется кусков, которые можно разрезать, не нарушая правил 1 и 2.
Ясно, что по указанным правилам наш лист можно разрезать несколькими способами. Некоторые из этих способов будут симметричны или отличаться друг от друга только поворотом, но мы будем считать такие способы различными. Пусть F(M,N) – это количество способов, которыми можно разрезать прямоугольный лист размером M × N.
Например, F(1,1)=2, F(1,2)=F(2,1)=6, F(2,2)=30.
Случай M=2, N=2 проиллюстрирован рисунком:

eu270.png

Найдите остаток от деления F(25,35) на 108.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 14.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:

  • Статуя порядка n состоит из n единичных квадратов — блоков и еще одного квадрата — постамента (всего — n+1 квадрат).
  • Центр постамента находится в начале координат (x = 0, y = 0).
  • Центры всех блоков имеют положительные координаты y, так что постамент находится ниже остальных квадратов.
  • Центр масс уравновешенной статуи имеет нулевую горизонтальную координату x.

Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй.

eu275.gif

Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда  Z(6)=18, Z(10)=964, Z(15)= 360505.

Найдите ∑Z(n)  для 1 ≤ n ≤ 18.

Задачу решили: 0
всего попыток: 3
Задача опубликована: 18.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Трудолюбивый муравей случайно блуждает по клетчатой доске 5х5, расположенной вертикально. Он начинает свое движение в центре доски, а его траектория состоит из вертикальных и горизонтальных отрезков, соединяющих центры соседних клеток. Направление каждого следующего отрезка он выбирает случайным образом и с равной вероятностью из 2, 3 или 4 возможных вариантов, в зависимости от своего положения.

В начальный момент в каждой из пяти клеток нижнего ряда расположено по одному зерну. Если муравей свободен от ноши, и он оказывается в клетке нижнего ряда, содержащей зернышко, то он его забирает. Если муравей с зерном оказывается в свободной клетке верхнего ряда, то он оставляет зерно в этой клетке.

Работа муравья считается завершенной, когда все зерна перенесены из нижнего ряда в верхний (понятно, что в каждой клетке верхнего ряда окажется по одному зерну).

Какова средняя ожидаемая продолжительность работы муравья, если его путь на одну клетку вниз занимает 1 секунду, на одну клетку вверх – 3 секунды, а на одну клетку вправо или влево по горизонтали – 2 секунды?

Ответ дайте в микросекундах, округлив вниз до целого.

Задачу решили: 5
всего попыток: 10
Задача опубликована: 25.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Мы хотим приготовить пиццу круглой формы, состоящую из m?n ломтей-секторов одного размера, но с разной начинкой. У нас есть m≥2 сортов начинки, и каждый сорт мы должны использовать ровно для n ломтей.

Обозначим через f(m,n) количество способов приготовления пиццы, в которой будет ровно n ломтей, заправленных начинкой каждого из m сортов. Поскольку пиццу можно крутить как угодно вокруг вертикальной оси, но нельзя переворачивать начинкой вниз, зеркально симметричные варианты считаются различными, а варианты, отличающиеся только поворотом, предполагаются одинаковыми.

Например, f(2,1)=1,  f(2,2)=f(3,1)=2 и  f(3,2)=16.

Случай f(3,2) показан на рисунке:

 p_281_pizza.gif

Найдите сумму всех f(k,k), не превышающих 1015.

 

Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 6
всего попыток: 8
Задача опубликована: 17.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.

  • При n=1 первый игрок автоматически проигрывает, поскольку не может сделать ни одного хода.
  • При n=2 есть только один ход, который автоматически ведет к победе.
  • При n=3 первый игрок может выбрать один из двух различных ходов, и оба они ведут к немедленной победе.
  • При n=4 есть три варианта хода. Среди них есть один выигрышный ход, когда игрок закрашивает две средние клетки.
  • При n=5 есть четыре варианта хода (они показаны на рисунке красным цветом), но все они ведут к поражению: второй игрок (показан синим цветом) всегда может выиграть.

eu306.png

Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43.

Найдите миллионное значение n, при котором второй игрок всегда может победить.

 

Задачу решили: 2
всего попыток: 3
Задача опубликована: 17.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Сферическим треугольником называют фигуру на поверхности сферы, ограниченную дугами больших кругов, имеющими попарно общие концы.

eu332.jpg  

Пусть C(r) – сфера с центром в начале координат (0,0,0) и радиусом r.

Пусть Z(r) – множество точек сферы C(r) с целыми координатами.

Пусть T(r) – множество сферических треугольников с вершинами, принадлежащими Z(r). Вырожденные сферические треугольники с вершинами, принадлежащими одному большому кругу, не включаются в T(r).

Пусть A(r) – наименьшая площадь треугольника из T(r), а B(r) =(4πr2)/A(r) – величина, обратная доле площади сферы, которую занимает наименьший сферический треугольник.

Например, A(14) ≈3,294040, а B(14) ≈ 748.

Найдите максимальное значение B(r) для натуральных r, не превышающих 50. Результат округлите до ближайшего целого.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 01.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg, игрыimg

Вообразите бесконечный в оба конца ряд чаш, перенумерованных целыми числами.

В некоторых чашах лежат бобы. Разрешается делать ходы следующего вида: взять два боба из одной чаши и разложить их в две соседние. Игра заканчивается, когда сделать ход невозможно.

В примере на рисунке в две соседние чаши положили 2 и 3 боба, а остальные чаши оставили пустыми. Как видно, такую игру можно закончить за 8 ходов.

 eu334.gif

Рассмотрим последовательность целых чисел bi следующего вида:

b0 = 0, b1 = 289, b2 = 145

bi = (bi-1 + bi-2 + bi-3) mod 2013,

где x mod y означает остаток от деления x на у.

Пусть количество бобов в двух соседних чашах определяется числами b1 = 289 и b2 = 145, а остальные чаши в начальном положении пусты. В этом случае игру можно закончить за 3419100 ходов.

Подсчитайте, сколько ходов потребуется для завершения игры , если в начальном положении в чашах с номерами от 1 до 1500 лежит b1, b2, ... b1500 бобов, соответственно, а остальные чаши пусты.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.