img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 2
всего попыток: 3
Задача опубликована: 26.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Теперь рассмотрим следующий алгоритм вычисления округленного квадратного корня, фактически являющийся модификацией формулы Герона для целочисленной арифметики:
Пусть d — количество знаков числа n,
x0 = 2?10(d-1)⁄2 для нечетных d, и
x0 = 7?10(d-2)⁄2 для четных d.
Будем вычислять последовательность xk
xk+1=[(xk+{n/xk})/2]
до тех пор, пока последовательные значения не совпадут: xk+1 = xk. Скобки [] - означают округление вниз, а {} - округление вверх.
Для примера вычислим округленный квадратный корень из 4321. Это четырехзначное число, поэтому x0 = 7 ? 10(4-2)⁄2 = 70.
x1=[(70+{4321/70})/2]=66
x2=[(66+{4321/66})/2]=66
Поскольку  x2 = x1,  двух итераций  оказалось достаточно, и мы нашли округленный квадратный корень, равный 66 (это правильный результат, поскольку квадратный корень из 4321 примерно равен 65,7343137…)
Описанный метод оказался удивительно эффективным. Например, для вычисления округленных квадратных корней из пятизначных чисел требуется не более 5 итераций. Существует всего 82 пятизначных числа (например, число 10097), для которых алгоритм требует пяти шагов.
Найдите максимальное число итераций, которое может потребоваться для вычисления округленного квадратного корня из 14-значного числа. В качестве ответа укажите количество 14-значных чисел, для вычисления округленного квадратного корня из которых требуется найденное максимальное число шагов. 

Задачу решили: 2
всего попыток: 8
Задача опубликована: 13.02.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Высота над уровнем моря на острове Буян определяется формулой

,
где x и y — горизонтальные декартовы координаты.
Шмелю нужно попасть из точки А с горизонтальными координатами (600,600) в точку В с координатами (1400,1400). Чтобы обогнуть возвышенности, шмель из точки A вертикально поднимается на высоту f, затем, двигаясь горизонтально, достигает точки, расположенной прямо над точкой B, и наконец, спускается на землю по вертикали.
Шмель не любит без нужды подниматься вверх слишком высоко, и поэтому он выбирает минимальную высоту fmin, оставаясь на которой можно достичь цели, а на этой высоте выбирает кратчайший путь, лежащий в горизонтальной плоскости.
Найдите длину этого кратчайшего пути, который шмель проделает по горизонтали на высоте fmin. Результат умножьте на 1000 и округлите вниз до целого.

Примечание. Для вашего удобства формула высоты записана в более удобном для программирования виде:

h=( 5000-0.005*(x*x+y*y+x*y)+12.5*(x+y) ) * exp( -abs(0.000001*(x*x+y*y)-0.0015*(x+y)+0.7) )

Задачу решили: 3
всего попыток: 4
Задача опубликована: 02.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Корнем многочлена P(x) называют решение уравнения P(x) = 0.
Обозначим через Pn многочлен, коэффициенты которого являются десятичными знаками числа n.
Например, P5703(x) = 5x3 + 7x2 + 3.
Ясно, что
• Pn(0) – это последняя цифра числа n,
• Pn(1) – это сумма цифр числа n,
• Pn(10) – это само число n.
Если n оканчивается на ноль, то Pn имеет корень, равный нулю. Обозначим через Y(k) количество таких натуральных n, не превышающих k, для которых соответствующий многочлен Pn имеет хотя бы один целый корень, отличный от нуля. Например, Y(100 000) = 5545.
Чему равно Y(1016)?

Задачу решили: 3
всего попыток: 6
Задача опубликована: 09.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами:
1. Каждый разрез представляет собой отрезок, соединяющий отмеченные точки.
2. Разрезы не пересекаются, но могут иметь общие концы, соответствующие отмеченным точкам.
3. Мы будем продолжать делать разрезы, пока не останется кусков, которые можно разрезать, не нарушая правил 1 и 2.
Ясно, что по указанным правилам наш лист можно разрезать несколькими способами. Некоторые из этих способов будут симметричны или отличаться друг от друга только поворотом, но мы будем считать такие способы различными. Пусть F(M,N) – это количество способов, которыми можно разрезать прямоугольный лист размером M × N.
Например, F(1,1)=2, F(1,2)=F(2,1)=6, F(2,2)=30.
Случай M=2, N=2 проиллюстрирован рисунком:

eu270.png

Найдите остаток от деления F(25,35) на 108.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 14.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:

  • Статуя порядка n состоит из n единичных квадратов — блоков и еще одного квадрата — постамента (всего — n+1 квадрат).
  • Центр постамента находится в начале координат (x = 0, y = 0).
  • Центры всех блоков имеют положительные координаты y, так что постамент находится ниже остальных квадратов.
  • Центр масс уравновешенной статуи имеет нулевую горизонтальную координату x.

Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй.

eu275.gif

Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда  Z(6)=18, Z(10)=964, Z(15)= 360505.

Найдите ∑Z(n)  для 1 ≤ n ≤ 18.

Задачу решили: 0
всего попыток: 3
Задача опубликована: 18.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Трудолюбивый муравей случайно блуждает по клетчатой доске 5х5, расположенной вертикально. Он начинает свое движение в центре доски, а его траектория состоит из вертикальных и горизонтальных отрезков, соединяющих центры соседних клеток. Направление каждого следующего отрезка он выбирает случайным образом и с равной вероятностью из 2, 3 или 4 возможных вариантов, в зависимости от своего положения.

В начальный момент в каждой из пяти клеток нижнего ряда расположено по одному зерну. Если муравей свободен от ноши, и он оказывается в клетке нижнего ряда, содержащей зернышко, то он его забирает. Если муравей с зерном оказывается в свободной клетке верхнего ряда, то он оставляет зерно в этой клетке.

Работа муравья считается завершенной, когда все зерна перенесены из нижнего ряда в верхний (понятно, что в каждой клетке верхнего ряда окажется по одному зерну).

Какова средняя ожидаемая продолжительность работы муравья, если его путь на одну клетку вниз занимает 1 секунду, на одну клетку вверх – 3 секунды, а на одну клетку вправо или влево по горизонтали – 2 секунды?

Ответ дайте в микросекундах, округлив вниз до целого.

Задачу решили: 5
всего попыток: 10
Задача опубликована: 25.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Мы хотим приготовить пиццу круглой формы, состоящую из m?n ломтей-секторов одного размера, но с разной начинкой. У нас есть m≥2 сортов начинки, и каждый сорт мы должны использовать ровно для n ломтей.

Обозначим через f(m,n) количество способов приготовления пиццы, в которой будет ровно n ломтей, заправленных начинкой каждого из m сортов. Поскольку пиццу можно крутить как угодно вокруг вертикальной оси, но нельзя переворачивать начинкой вниз, зеркально симметричные варианты считаются различными, а варианты, отличающиеся только поворотом, предполагаются одинаковыми.

Например, f(2,1)=1,  f(2,2)=f(3,1)=2 и  f(3,2)=16.

Случай f(3,2) показан на рисунке:

 p_281_pizza.gif

Найдите сумму всех f(k,k), не превышающих 1015.

 

Задачу решили: 0
всего попыток: 1
Задача опубликована: 02.07.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Функция Аккермана A(m,n) рекурсивно задается для неотрицательных целых чисел m и n следующим образом:

A(m, n) = \left\{ \begin{array}{rrrrr}
n+1, m=0 \\
A(m-1, 1), m>0, n=0 \\
A(m-1, A(m, n-1)), m>0, n>0
\end{array}

Например, A(1, 0) = 2, A(2, 2) = 7 и A(3, 4) = 125.

Чему равен остаток от деления \sum A(m,n) на 148, где 0 \le m,n \le 6?

 
Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 7
всего попыток: 11
Задача опубликована: 03.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Как известно, последовательность Фибоначчи определяется рекуррентно:

f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1.

Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106.

Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.