Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
3
всего попыток:
3
Построим последовательность случайных чисел sn при помощи генератора Блюм-Блюма-Шуба:
Например, Можно показать, что среди значений p(k) для 0<k≤103 найдется 614 нечетных и 386 четных.
Задачу решили:
5
всего попыток:
43
В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?
Задачу решили:
5
всего попыток:
12
Рассмотрим множество, состоящее из первых n натуральных чисел: {1,2,...,n}.
Задачу решили:
3
всего попыток:
4
Даны n натуральных чисел 1 < a1 < a2 < ... < an. Будем рассматривать их линейные комбинации вида q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2 = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Задачу решили:
5
всего попыток:
6
Рассмотрим многочлен N(p,q) = ΣTn*pn, где p, q - натуральные числа, сумма берется для 0≤n≤q, а коэффициенты Tn получены с помощью генератора случайных чисел:
Задачу решили:
10
всего попыток:
11
Назовем простое число p числом Панаитопола (Panaitopol), если его можно представить в виде p = (x4-y4)/(x3+ y3), где x и y — натуральные числа. Найдите последние 8 цифр суммы чисел Панаитопола, не превышающих 5×1015.
Задачу решили:
4
всего попыток:
4
Как известно, каждый член последовательности Фибоначчи является суммой предыдущих двух. Начав с чисел 1 и 2, получим последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Каждое натуральное число может быть единственным образом записано в виде суммы некоторого набора различных чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Например, 100 = 3 + 8 + 89. Такую сумму называют представлением Цекендорфа. Обозначим через z(n) число слагаемых в представлении Цекендорфа для натурального числа n. Тогда z(5)=1, z(14)=2, z(100)=3. ∑z(n) для всех шестизначных n равна 7236250. Найдите ∑z(n) для всех 17-значных n.
Задачу решили:
2
всего попыток:
5
Лёва и Петя поспорили, у кого лучше память, и решили проверить. Для этого они обзавелись генератором случайных чисел, настроили его на получение случайных чисел от 1 до 10 и стали соревноваться, кто больше чисел запомнит. По условию игры участник получает очко, если очередное число все еще хранится в его памяти. Побеждает тот, кто набрал больше очков. По ходу дела выяснилось, что и Лёва, и Петя могут удержать в голове не более пяти разных чисел. Если игрок уже помнит пять чисел, то чтобы запомнить следующее, не содержащееся к этому моменту в его памяти, он вынужден забыть одно из имеющихся. Однако оказалось, что забывание происходит несколько по-разному:
В начале соревнования память игроков свободна. Вот пример начала игры:
Обозначим количество очков, которые Лёва и Петя набрали после 50 туров через L и P, соответственно. Найдите математическое ожидание величины (L-P)2, результат умножьте на 108 и округлите до ближайшего целого.
Задачу решили:
14
всего попыток:
17
Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек. Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203. Можно подсчитать, что f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443 Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000
Задачу решили:
4
всего попыток:
11
При изготовлении микросхемы, состоящей из n транзисторов, образовалось k микродефектов. Дефекты распределены случайным образом, каждый дефект оказался в одном из транзисторов, и в любом транзисторе могло оказаться любое количество дефектов. Если в каком-либо транзисторе оказалось три или более дефектов, такой транзистор не работает, и вся микросхема идет в брак. Обозначим через E(n,k) математическое ожидание количества транзисторов, содержащих дефекты, в годной микросхеме. Например, E(13,3)≈2.78571... Найдите E(1000000,20000), умножьте на 100000, а результат округлите до целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|