img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 16
всего попыток: 18
Задача опубликована: 04.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n.
Взяв некоторое число n,  будем строить цепочку n, φ(n), φ(φ(n)), φ(φ(φ(n)))…, пока не получим 1. Например, начав с 5, получим последовательность 5,4,2,1, содержащую 4 члена. Ниже приведены все последовательности, содержащие 4 члена.

5,4,2,1
7,6,2,1
8,4,2,1
9,6,2,1
10,4,2,1
12,4,2,1
14,6,2,1
18,6,2,1

Ровно две из них начинаются с простых чисел.
Найдите сумму всех простых чисел, не превышающих 40000000, с которых начинается последовательность длиной 25 и более членов.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 18.07.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

В игру "Погоня" играет четное количество игроков за круглым столом двумя игральными костями.
В начале игры два игрока, сидящие друг напротив друга, получают каждый по кости. Каждую секунду игроки, получившие кость, делают ход. Для этого они одновременно бросают кубик, и если выпадает 1, они передают кость соседу слева, а если выпадет 6 – соседу справа. В остальных случаях кубик остается у игрока до следующего хода. Игра заканчивается, когда оба кубика после очередного хода окажутся у одного игрока. Этот игрок считается проигравшим.
Однажды за стол сели играть 100 игроков. Их перенумеровали подряд по часовой стрелке. Спустя некоторое время кубики оказались у игроков № 33 и № 77.
Каково ожидаемое время до конца игры?
Ответ дайте в миллисекундах, округлив его до целого.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 22.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим число
G(n) = (n2)!/(n!)n,
где n – натуральное. Несложно показать, что G(n) – тоже натуральное число.
Например, G(3)=1680. Разложим 1680 на простые множители, а затем их сложим:

1680=24×3×5×7=2×2×2×2×3×5×7,
и
2 + 2 + 2 + 2 + 3 + 5 +7 = 23.
Таким образом, сумма простых множителей числа G(3) равна 23.

Найдите сумму простых множителей числа G(4444).

Задачу решили: 5
всего попыток: 43
Задача опубликована: 10.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?

Задачу решили: 2
всего попыток: 5
Задача опубликована: 20.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Обозначим через σ(n) сумму делителей натурального числа n, например σ(6) = 1 + 2 + 3 + 6 = 12.
Для совершенных чисел n, как вы, вероятно, знаете, σ(n) = 2n. Поэтому назовем коэффициентом совершенства отношение p(n)=σ(n) / n. У совершенных чисел коэффициент совершенства равен 2.
Найдите сумму таких натуральных n < 1018, у которых коэффициент совершенства является несократимой дробью со знаменателем 3.

Задачу решили: 5
всего попыток: 12
Задача опубликована: 24.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим множество, состоящее из первых n натуральных чисел: {1,2,...,n}.
Обозначим через f(n,k) количество его k-элементных подмножеств, сумма элементов которых нечетна. Например, f(5,3) =4, поскольку множество {1,2,3,4,5} имеет четыре 3-элементных подмножества с нечетной суммой элементов: {1,2,4}, {1,3,5}, {2,3,4} и {2,4,5}.
Когда все три числа n, k и f(n,k) нечетны, будем говорить, что они образуют нечетный триплет, и обозначим через g(m) количество нечетных триплетов [n,k,f(n,k)] с n ≤ m.
Тогда g(10)=5, поскольку существует ровно 5 нечетных триплетов с n ≤ 10, а именно:
[1,1,f(1,1)=1], [5,1,f(5,1)=3], [5,5,f(5,5)=1], [9,1,f(9,1)=5] и[9,9,f(9,9)=1]
Найдите наименьшее m, при котором g(m) > 1018.

Задачу решили: 3
всего попыток: 7
Задача опубликована: 06.02.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть натуральное число k опорным, если существует такая пара натуральных чисел m≥0 и n≥k, для которых
(k-m)2 + ... + k2 = (n+1)2 + ... + (n+m)2,
то есть сумма m+1 последовательных квадратов вплоть до k2 включительно равна сумме m последовательных квадратов, начинающихся с (n+1)2, например:
4: 32 + 42 = 52
21: 202 + 212 = 292
24: 212 + 222 + 232 + 242 = 252 + 262 + 272
110: 1082 + 1092 + 1102 = 1332 + 1342
Найдите сумму всех различных опорных чисел в промежутке 109≤k≤1010.

Задачу решили: 7
всего попыток: 9
Задача опубликована: 16.07.12 08:00
Прислал: admin img
Источник:
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Трехзначное число 376 в десятичной системе счисления обладает одним интересным свойством: его квадрат заканчивается теми же цифрами 3, 7 и 6, 3762 = 141376.Будем называть натуральные числа, обладающие этим свойством, устойчивыми.

Устойчивые числа есть и в других системах счисления. Например, в системе счисления по основанию 14 устойчивым является число c37. Действительно, c372 = aa0c37. Наибольшее 10-значное устойчивое число в 14-ичной системе счисления равно 7337aa0c37. В десятичной записи это число равно 149429406721.

(В 14-ичной системе счисления буквами a, b, c и d мы обозначили цифры 10, 11, 12 и 13, подобно тому, как это делается в 16-ичной системе счисления.)

Найдите наибольшее 10000-значное устойчивое число в 14-ичной системе счисления, переведите его в десятичную систему, а в качестве ответа укажите 8 младших десятичных цифр.

 

Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Назовем пифагоровым многоугольником выпуклый многоугольник, обладающий следующими свойствами:

  • Он имеет не менее  трех вершин
  • Никакие три его вершины не лежат на одной прямой
  • Все вершины имеют целые координаты
  • Все стороны многоугольника имеют целочисленную длину

Обозначим через Q(n) количество различных пифагоровых многоугольников, периметр которых равен n. При этом различными будем считать многоугольники, которые нельзя преобразовать друг в друга путем параллельного переноса.

Тогда Q(4)=1, Q(30) =1242, Q(60) =248282.

Найдите Q(120).

Задачу решили: 10
всего попыток: 12
Задача опубликована: 17.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть четное натуральное число N приемлемым, если все его различные простые делители являются последовательными простыми числами. В частности, все положительные степени 2 являются приемлемыми. Число N=630 приемлемо, поскольку оно четно, а его различные простые множители – 2,3,5,7 – это последовательные простые числа. Число N=660 неприемлемо, поскольку в последовательности его простых множителей – 2,3,5,11 – пропущено простое число 7. 

Если N – приемлемое число, то наименьшее число M>1, для которого N+M – простое число, будем называть псевдо-форчуновым числом приемлемого числа N.

Найдите наименьшее приемлемое N, для которого псевдо-форчуново число равно 97.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.