img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 87
всего попыток: 141
Задача опубликована: 22.03.09 19:38
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

В 2009 году в России имеются банкноты достоинством 5, 10, 50, 100, 500, 1000 и 5000 рублей.

Сколько существует способов при помощи банкнот составить сумму 16 тысяч рублей. 

Задачу решили: 90
всего попыток: 208
Задача опубликована: 05.04.09 20:50
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Составьте число из идущих подряд простых чисел: 23571113171923... Найти сумму цифр находящихся на местах 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001.

Это открытая задача (*?*)
Задача опубликована: 11.05.09 13:21
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 200
Лучшее решение: Anton_Lunyov

В матрице размера 10x10 в каждой строке стоят целые числа от 0 до 9, при этом числа в строках не повторяются. Найти наибольший определитель такой матрицы.

Задачу решили: 22
всего попыток: 151
Задача опубликована: 01.06.09 08:34
Прислал: admin img
Вес: 2
сложность: 4 img
баллы: 200
Темы: алгоритмыimg
Лучшее решение: Kruger

На шахматную доску расставляются различные фигуры - кони, слоны, ладьи, ферзи и короли, при этом каждая фигура присутствует хотя бы один раз и ни одна фигура не находится под боем остальных. Какое максимальное количество фигур можно разместить таким образом?

Задачу решили: 45
всего попыток: 61
Задача опубликована: 08.06.09 11:06
Прислал: admin img
Вес: 2
сложность: 2 img
баллы: 100
Лучшее решение: SemmZemm (Семён Марчук)

Найти минимальное n, такое что в записи n! встречаются все двухзначные числа. 

Задачу решили: 6
всего попыток: 16
Задача опубликована: 04.07.09 09:14
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.

Задачу решили: 15
всего попыток: 172
Задача опубликована: 13.07.09 09:37
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 500
Темы: алгоритмыimg
Лучшее решение: Kruger

За какое минимальное количество ходов конь, находящийся на шахматной доске, может гарантированно пройти 8 любых полей доски? 

Задачу решили: 18
всего попыток: 44
Задача опубликована: 22.07.09 23:07
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Строка состоит из 33 символов A и B. При этом в каждой подстроке, длина которой больше 9, количество символов A как минимум на 3 больше количества символов B. Сколько таких строк существует?

Задачу решили: 8
всего попыток: 42
Задача опубликована: 23.08.09 13:16
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Группу из 30 студентов нужно разбить на две команды, так чтобы в первой команде было больше студентов, чем во второй, но не более чем в полтора раза. При этом в каждой группе должны оказаться знакомые друг с другом студенты. Знакомство задается матрицей с элементами Aij (1≤i,j≤30), в которой Aij=Aji=1,  если студенты с номерами i и j знакомы, и Aij=Aji=0 - если не знакомы. Также известно, что если i+j и i*j одновременно делятся на 3, то Aij=1, остальные элементы равны нулю. Сколько возможно разбиений на команды?

Задачу решили: 11
всего попыток: 30
Задача опубликована: 01.09.09 00:50
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее.

Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.