Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
1
всего попыток:
4
На полке размещены музыкальные диски из n коробок, 1<=n<=100. Диски из одной коробки одной тематики и пронумерованы по порядку, дисков в коробке не более 10. За 1 шаг можно переставить один диск в любое место на полке.
Задачу решили:
40
всего попыток:
55
Римских цифр не много, вот они: 1 - I, 5 - V, 10 - X, 50 - L, 100 - C, 500 - D, 1000 - M. Однако в древности единообразия в записи чисел не было. Например, для обозначения числа четыре писали то IV, то IIII (такую форму записи до сих пор иногда используют на циферблатах часов). А над 49-ым входом в римский Колизей можно увидеть номер XXXXVIIII, а не XLIX, как принято писать сейчас. Современные правила римской записи стали преобладающими уже в новое время. Они обеспечивают "экономную" запись, минимизируя число использованных знаков. Запишем римскими цифрами несколько простых чисел: II, III, V, VII, XI, XIII, XVII При этом мы использовали знак X три раза. А сколько потребуется знаков X, чтобы записать современным "экономным" способом все простые числа от II до MMMCMXCIX?
Задачу решили:
32
всего попыток:
102
В Думу одного государства избираются 450 депутатов по партийным спискам. Партия, набравшая максимум голосов (такая всегда есть) получает право по своему усмотрению
Задачу решили:
6
всего попыток:
16
В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.
Задачу решили:
133
всего попыток:
189
Полоска бумаги состоит из 2048 клеток. Полоску сгибают ровно пополам так, что правый конец наложился на левый. Затем эту процедуру продолжают до тех пор, пока не останется одна клетка. На какое место от начала полоски нужно поставить отметку, чтобы она оказалась на самом верху?
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
15
всего попыток:
172
За какое минимальное количество ходов конь, находящийся на шахматной доске, может гарантированно пройти 8 любых полей доски?
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Задачу решили:
21
всего попыток:
47
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12. Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу. Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Задачу решили:
0
всего попыток:
3
Клетки шахматной доски размером 8x8 обозначены стандартным способом по горизонтали буквами "a-h" и по вертикали цифрами "1-8". У вас имеются по 8 комплектов каждой буквы и каждой цифры и вы размещаете на каждой клетке одну букву и одну цифру, таким образом, чтобы полученный номер не совпадал со стандартным (должна отличаться или буква или цифра). Найдите количество таких размещений и введите в ответ сумму цифр полученного числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|