Лента событий:
Vkorsukov
решил задачу
"Целочисленные точки на эллипсах - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
6
всего попыток:
15
Для числового множества A обозначим через sum(A) сумму его элементов. Вычислим суммы для всех 20 трехэлементных подмножеств множества B: Теперь рассмотрим множество S, состоящее из 120 элементов:
Задачу решили:
6
всего попыток:
6
Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч. Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Задачу решили:
12
всего попыток:
15
Рассмотрим треугольник Паскаля: 1 В первых восьми его строках содержится 12 различных чисел:
Задачу решили:
18
всего попыток:
27
Числами Хэмминга называются такие натуральные числа, у которых нет простых делителей, больших, чем 5. Вот первые числа Хэмминга: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15. Их сумма равна 75. Существует 1105 чисел Хэмминга, не превышающих 108. Их сумма равна 14954859000 Если у натурального числа нет простых делителей, превышающих n, мы будем называть его обобщенным числом Хэмминга типа n. Например, числа Хэмминга являются обобщенными числами Хэмминга типа 5. Найдите сумму обобщенных чисел Хэмминга типа 70, не превышающих 2?109.
Задачу решили:
11
всего попыток:
45
Оля и Дима играют в кости.
Задачу решили:
30
всего попыток:
35
На доске записали 17-значное число, являющееся полным квадратом. Затем 8 цифр стерли и заменили их звездочками. Вот, что получилось:
Задачу решили:
9
всего попыток:
16
Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет. P(5) = 1/1 Найдите сумму всех m, для которых P(m)=1/7777.
Задачу решили:
6
всего попыток:
8
Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте. На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932. Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).
Задачу решили:
7
всего попыток:
17
Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).
Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
Задачу решили:
4
всего попыток:
6
Пусть на координатной плоскости точка O(0,0) - начало координат, а C - точка с координатами (r,r). Например, N(1)=2, и N(4)=60. Найдите N(227).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|