Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
36
Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Задачу решили:
23
всего попыток:
33
Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Задачу решили:
14
всего попыток:
45
В игре "Пятнашки" необходимо в квадратной коробке размера 4х4 переставить пятнадцать произвольно расположенных плашек по порядку, при этом единственным разрешенным действием является перемещение одной из плашек в соседнюю незанятую в коробке позицию (http://ru.wikipedia.org/wiki/Пятнашки). Определите, за какое минимальное количество ходов можно решить данную головоломку при следующем начальном расположении плашек в коробке (незанятая позиция обозначена числом 0): 5 13 2 9 11 15 7 10 0 8 12 14 3 6 4 1
Задачу решили:
86
всего попыток:
140
Найти наименьшее число n, такое что n! имеет в конце 1000000 нулей.
Задачу решили:
47
всего попыток:
60
На первом рисунке треугольное "магическое" кольцо. Его "магическое" свойство заключается в том, что суммы чисел, расположенных вдоль каждого отрезка, одинаковы. В данном случае они равны 9. Выберем наименьшее "внешнее" число, в данном случае 4, и соответствующую ему тройку (4,3,2 в данном примере). Начиная с этой тройки, будем двигаться по часовой стрелке, выписывая тройки одну за другой: 4,3,2; 6,2,1; 5,1,3. Получившаяся последовательность однозначно определяется исходным "магическим" кольцом. Треугольное "магическое" кольцо можно заполнить 8 различными способами, а сумма троек может быть 9, 10, 11 или 12: Сумма Последовательность Каждую последовательность можно объединить в 9-значное число; минимальное такое число для 3-угольного кольца равно 146362524.
Если числа от 1 до 10, расставить в пятиугольном кольце на втором рисунке, можно аналогичным образом сформировать 16-значную или 17-значную последовательность. Определите минимальное 17-значное число, которое можно получить описанным способом из "магического" пятиугольного кольца.
Задачу решили:
47
всего попыток:
53
Функция Эйлера φ(n) определяется так: для любого натурального n>1 её значение равно количеству натуральных чисел, меньших n и взаимно простых с n, по определению φ(1)=1, в частности φ(9)=6 (числа 1, 2, 4, 5, 7, 8 - взаимно просты с числом 9). Значение функции φ(87109) = 79180 интересно тем, что оно может быть получено перестановкой цифр в аргументе функции 87109. Найти такое n, 1<n<107, для которого φ(n) является перестановкой n, а разность n-φ(n) максимальна.
Задачу решили:
46
всего попыток:
84
Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Задачу решили:
23
всего попыток:
79
Вы собираете теннисные мячи в корзины, сотоящие из трех отделений, при этом раскладываете их по следующим правилам: 1. во всех отделениях всех корзин разное (ненулевое) количество мячей; 2. во всех корзинах в сумме по отделениям одинаковое количество мячей; 3. количество мячей в корзинах минимально возможное для данного количества корзин. Например, если у вас 2 корзины, то в отделения первой корзины последовательно разещаем 1, 3 и 7 мячей, а в отделения второй - 2, 4 и 5 мячей. В результате в каждой корзине будет по 11 мячей, и это число минимально возможное. У вас 100 корзин, найти сумму мячей в одной корзине.
Это открытая задача
(*?*)
Строку натуральных чисел (1, 3, 5, 2, 4) попробуем упорядочить при помощи специальных перестановок: разделим строку на 2 части (1, 3, 5) и (2, 4), первую строку запишем в обратном порядке и присоединим ко второй, в результате получим (5, 3, 1, 2, 4). Далее действуем также - разбиваем строку на 2 любые части (любая часть может быть пустой), первую часть записываем в обратном порядке и просоединяем ко второй. При помощи перестановок: (5, 3, 1, 2, 4) = (5, 3, 1, 2, 4) + () -> (4, 2, 1, 3, 5) (4, 2, 1, 3, 5) = (4, 2, 1, 3) + (5) -> (3, 1, 2, 4, 5) (3, 1, 2, 4, 5) = (3, 1, 2) + (4, 5) -> (2, 1, 3, 4, 5) (2, 1, 3, 4, 5) = (2, 1) + (3, 4, 5) -> (1, 2, 3, 4, 5) За какое минимальное количество перестановок гарантированно можно упорядочить строку чисел от 1 до 100?
Задачу решили:
19
всего попыток:
28
Будем изготавливать из проволоки прямоугольные треугольники с целочисленными сторонами. Для этого нам потребуется кусок проволоки длиной не менее 12 см, а из двенадцатисантиметрового куска мы сможем согнуть такой треугольник ровно одним способом. Существует бесконечно много чисел, которые могли бы быть периметром прямоугольного треугольника, например: С другой стороны, если взять проволоку длиной 20, прямоугольный треугольник с целочисленными сторонами из нее не согнешь, а из проволоки длиной 120 см можно сделать три разных треугольника: 120 см: (30,40,50), (20,48,52), (24,45,51)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|