img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 154
Задача опубликована: 06.05.09 18:16
Прислал: falagar img
Источник: изменённая задача из журнала "Квант"
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Математик R сказал математикам P и S: "Я задумал два различных натуральных числа меньших 123. Математику P я сейчас сообщу - по секрету от S - произведение этих чисел, а математику S я сообщу - по секрету от P - их сумму".

Он выполнил обещанное и предложил отгадать задуманные числа. Между P и S произошёл следующий диалог:

S: "Я не могу сказать, чему равны задуманные числа."

P: "Я не могу сказать, чему равны задуманные числа."

S: "Я не могу сказать, чему равны задуманные числа."

P: "Я не могу сказать, чему равны задуманные числа."

S: "Я не могу сказать, чему равны задуманные числа."

P: "Я не могу сказать, чему равны задуманные числа."

S: "А ведь тогда я их знаю!"

Какие числа задумал математик R? Введите оба числа: сначала меньшее, потом большее. Например, если ответом на задачу являются числа 34 и 12, то введите 1234. 

Задачу решили: 47
всего попыток: 132
Задача опубликована: 11.05.09 10:19
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Десятичная запись числа 987654321! заканчивается на 246913573 нулей. Чему равны последние шесть ненулевых цифр?

Задачу решили: 43
всего попыток: 127
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Игра Ним - игра для двух человек. Правила игры очень просты.
Есть несколько кучек камней. Двое по очереди делают ходы. Ход заключается в том, что игрок выбирает непустую кучку и берет из нее любое число камней (ненулевое). Проигрывает тот, кто не может сделать ход. Если изначально в игре три кучки: 10, 15, 20, то при правильной игре выиграет первый игрок, а если 10, 20 и 30, то второй. Найдите минимальное n для которого в игре "10 20 30 40 50 60 70 80 90 n" выиграет второй.

Задачу решили: 28
всего попыток: 70
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: tyamgin (Ivan Tyamgin)

Найти наименьшее натуральное число n для которого 2n + 3 делится на простое число 625406681329.

Задачу решили: 63
всего попыток: 85
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Найти наименьшее натуральное число, которое при делении на 123 дает остаток 12, при делении на 239 дает остаток 57, при делении на 361 - остаток 239, при делении на 566 - остаток 361, а при делении на 1237 - остаток 566.

Задачу решили: 22
всего попыток: 37
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Вершинам правильного пятиугольника приписаны целые числа a, b, c, d, e, при этом a + b + c + d + e > 0. За один ход можно сделать следующую операцию: выбрать вершину, которой приписано отрицательное число, поменять у него знак и прибавить его к соседям. Иными словами, если числа x, y, z приписаны трем последовательным вершинам и y < 0, то их можно заменить на x + y, -y, z + y. Можно доказать, что при любом наборе начальных чисел рано или поздно получится набор, состоящий только из неотрицательных чисел. Например, пусть изначальные числа -1, 2, 3, 4, -5. Их сумма больше нуля. Можно сделать максимум 10 операций, прежде чем все числа станут неотрицательными. Требуется найти такой набор начальных чисел, по модулю не превосходящих 10, для которого существует последовательность операций максимальной длины. В качестве ответа выведите максимальное число операций.

Задачу решили: 12
всего попыток: 46
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Известно, что все числа, начиная с некоторого, можно представить в виде 2229013x + 3875743y + 2390041z, где x, y и z - целые неотрицательные числа. Чему равно наибольшее натуральное число, которое нельзя представить в таком виде?

Задачу решили: 46
всего попыток: 55
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим десятичную запись числа √2=1.41421356237... Число 421 является первым трехзначным простым числом, встречающимся в этой записи. Число 135623 - первым шестизначным простым числом. Чему равно первое 12-значное простое число, встречающееся в десятичной записи числа √2?

Задачу решили: 30
всего попыток: 70
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим сумму Sn=1·31+2·32+3·33+4·34+5·35+...+n·3n. Требуется найти последние девять цифр числа S12345678987654321.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.