img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 53
всего попыток: 152
Задача опубликована: 23.04.09 20:09
Прислал: falagar img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: tv0r0g (Константин Еременко)

Числа Фибоначчи задаются следующей рекуррентной формулой: fn+2=fn+1+fn. При этом f0=0, f1=1. Требуется найти  fn по модулю 952301267 при n=1018.

Задачу решили: 82
всего попыток: 271
Задача опубликована: 23.04.09 20:09
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Требуется найти минимальное натуральное число с суммой цифр 123, которое делится на 1237.

Задачу решили: 23
всего попыток: 53
Задача опубликована: 25.04.09 08:29
Прислал: falagar img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим натуральные числа, в десятичной записи которых каждая цифра встречается не более двух раз. Расположим их в порядке возрастания: 1, 2, 3, 4, и т.д. Миллионное по счету число будет 1229648. Какое число будет на месте с номером 1012?

Задачу решили: 28
всего попыток: 70
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: tyamgin (Ivan Tyamgin)

Найти наименьшее натуральное число n для которого 2n + 3 делится на простое число 625406681329.

Задачу решили: 63
всего попыток: 85
Задача опубликована: 13.05.09 18:31
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: HoLoD (Владимир Морозов)

Найти наименьшее натуральное число, которое при делении на 123 дает остаток 12, при делении на 239 дает остаток 57, при делении на 361 - остаток 239, при делении на 566 - остаток 361, а при делении на 1237 - остаток 566.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.