img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Вова и Дима играют в числовую угадайку: Вова задумывает число, а Дима пытается его угадать. После каждой попытки Вова сообщает Диме количество угаданных цифр. Например, Вова задумал число 1234, а Дима предположил, что число равно 2036. Вова сообщает ему, что угадана одна цифра. Действительно, цифра 3 стоит в обоих числах на одном и том же месте. О том, что есть еще цифра 2, которая есть в обоих числах, но на разных позициях, Вова Диме не говорит.
Вчера Вова задумал 5-значное число, и вот как проходила игра:
1) Дима: 90342;  Вова: 2 цифры угаданы
2) Дима: 70794;  Вова: 0 цифр угадано
3) Дима: 39458;  Вова: 2 цифры угаданы
4) Дима: 34109;  Вова: 1 цифра угадана
5) Дима: 51545;  Вова: 2 цифры угаданы
Получив эту информацию, Дима сообразил, что для задуманного числа осталось всего четыре возможности: 31348, 31442, 39345, 39542. Тогда Дима сделал еще один ход:
6) Дима: 12531;  Вова: 1 цифра угадана
и определил загаданное число:  39542, поскольку других вариантов не осталось.
А сегодня игру решили усложнить. Теперь Вова загадал 16-разрядное число. Вот протокол игры:

  Попытка Димы Ответ Вовы: количество угаданных цифр
1 5616185650518293 2
2 3847439647293047 1
3 5855462940810587 3
4 9742855507068353 3
5 4296849643607543 3
6 3174248439465858 1
7 4513559094146117 2
8 7890971548908067 3
9 8157356344118483 1
10 2615250744386899 2
11 8690095851526254 3
12 6375711915077050 1
13 6913859173121360 1
14 6442889055042768 2
15 2321386104303845 0
16 2326509471271448 2
17 5251583379644322 2
18 1748270476758276 3
19 4895722652190306 1
20 3041631117224635 3

Дима долго думал и нашел все оставшиеся варианты. Найдите их и вы, а в качестве ответа укажите их сумму.

Задачу решили: 6
всего попыток: 9
Задача опубликована: 07.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Правильный треугольник со стороной 8 можно разбить на 64 одинаковых правильных треугольника, как показано на рисунке:

Раскрасим теперь то, что получилось, в три цвета: красный, синий и зеленый. Будем считать допустимой такую раскраску, при которых никакие два соседних (имеющих общую сторону) единичных треугольника раскрашены в разные цвета. Треугольники, имеющие общую вершину, но не имеющие общей стороны, не считаются соседними.
Вот пример допустимой раскраски для треугольника со стороной 8:

Обозначим через f(n) число различных допустимых раскрасок для треугольника со стороной n.
Если для получения одной раскраски из другой необходимы преобразования симметрии или повороты, мы будем считать такие раскраски различными.
Тогда f(1)=3, f(2)=24, f(3)=528.
∑f(n)=555 для 1 ≤ n ≤ 3.
Найдите ∑ f(n) для 1 ≤ n ≤ 8.

Задачу решили: 11
всего попыток: 45
Задача опубликована: 13.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Оля и Дима играют в кости.
У Оли шесть костей в форме октаэдра, и грани каждой из них занумерованы числами от 1 до 8.
У Димы четыре кости в форме додекаэдра, и грани каждой из них занумерованы числами от 1 до 12.
В каждом туре игроки бросают все свои кости по одному разу. Побеждает тот, у кого сумма выпавших очков больше. При равенстве фиксируется ничья.
Каково математическое ожидание количества побед Оли после миллиона туров?
Результат округлите вниз до целого.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 06.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: katalama (Иван Максин)

При строительстве стены используются кирпичи размером 2×1 и 3×1 (горизонтальный размер × вертикальный размер). Чтобы в стене не образовалась трещина, стыки между кирпичами не должны располагаться непосредственно друг над другом.
 
На рисунке красным цветом показано недопустимое расположение стыков.
Существует всего 8 допустимых способов построить стену длиной 9 и высотой 3 единицы. (Симметричные способы считаются различными.)
Найдите, сколькими способами можно построить квадратную стену, длина и высота которой равны 32 единицам. В качестве ответа укажите 8 младших разрядов результата.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 03.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Вы, вероятно, знаете игру в 15 (пятнашки).  На этот раз мы будем использовать не нумерованные костяшки, а цветные – семь красных и восемь синих.
На рисунке слева показано исходное положение (S) и положение (E), которое можно получить из исходного минимум за 5 шагов.

При этом есть ровно два способа, которыми можно достичь положения (E) за 5 шагов, а именно, двигая костяшки последовательно
1. влево, вверх, влево, вверх и вправо
или
2. вверх, влево, влево, вверх и вправо.

(S) (E)

Назовем кратностью положения количество способов, которыми можно достичь этого положения за минимальное количество шагов. Мы видели, что кратность положения (E) равна 2.
Найдите максимальную кратность для всех возможных конфигураций.

Задачу решили: 4
всего попыток: 8
Задача опубликована: 24.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Дано множество простых чисел, не превышающих 5000:
S = {2, 3, 5, ..., 4999}
Найдите, сколько оно содержит подмножеств, у которых количество элементов нечетно, а сумма элементов является простым числом.
В качестве ответа укажите последние 16 знаков результата.

Задачу решили: 5
всего попыток: 9
Задача опубликована: 28.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество непустых подмножеств множества

{1250250, 2250249, 3250248,... , 2502492, 2502501},

у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.

Задачу решили: 0
всего попыток: 3
Задача опубликована: 18.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Трудолюбивый муравей случайно блуждает по клетчатой доске 5х5, расположенной вертикально. Он начинает свое движение в центре доски, а его траектория состоит из вертикальных и горизонтальных отрезков, соединяющих центры соседних клеток. Направление каждого следующего отрезка он выбирает случайным образом и с равной вероятностью из 2, 3 или 4 возможных вариантов, в зависимости от своего положения.

В начальный момент в каждой из пяти клеток нижнего ряда расположено по одному зерну. Если муравей свободен от ноши, и он оказывается в клетке нижнего ряда, содержащей зернышко, то он его забирает. Если муравей с зерном оказывается в свободной клетке верхнего ряда, то он оставляет зерно в этой клетке.

Работа муравья считается завершенной, когда все зерна перенесены из нижнего ряда в верхний (понятно, что в каждой клетке верхнего ряда окажется по одному зерну).

Какова средняя ожидаемая продолжительность работы муравья, если его путь на одну клетку вниз занимает 1 секунду, на одну клетку вверх – 3 секунды, а на одну клетку вправо или влево по горизонтали – 2 секунды?

Ответ дайте в микросекундах, округлив вниз до целого.

Задачу решили: 5
всего попыток: 10
Задача опубликована: 25.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Мы хотим приготовить пиццу круглой формы, состоящую из m?n ломтей-секторов одного размера, но с разной начинкой. У нас есть m≥2 сортов начинки, и каждый сорт мы должны использовать ровно для n ломтей.

Обозначим через f(m,n) количество способов приготовления пиццы, в которой будет ровно n ломтей, заправленных начинкой каждого из m сортов. Поскольку пиццу можно крутить как угодно вокруг вертикальной оси, но нельзя переворачивать начинкой вниз, зеркально симметричные варианты считаются различными, а варианты, отличающиеся только поворотом, предполагаются одинаковыми.

Например, f(2,1)=1,  f(2,2)=f(3,1)=2 и  f(3,2)=16.

Случай f(3,2) показан на рисунке:

 p_281_pizza.gif

Найдите сумму всех f(k,k), не превышающих 1015.

 

Задачу решили: 6
всего попыток: 10
Задача опубликована: 11.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

По бесконечной клетчатой доске, клетки которой окрашены в черный или в белый цвет, ползает муравей. Он может двигаться в одном из четырех направлений: вверх, вниз, влево и вправо, с каждым шагом перемещаясь в соседнюю по стороне клетку. При этом муравей соблюдает следующие правила движения:

  • Если он находится на черной клетке, он перекрашивает клетку в белый цвет, изменяет направление своего движения на 90 градусов против часовой стрелки и переходит в соседнюю клетку.
  • Если он находится на белой клетке, он перекрашивает клетку в черный цвет, изменяет направление своего движения на 90 градусов по часовой стрелке и переходит в соседнюю клетку.

Пусть в начальный момент все клетки доски белые, а муравей находится в точке с координатами x=0 и y=0. Клетки доски ориентированы вдоль координатных осей и имеют единичный размер.
Найдите |x|+|y| после 1018 шагов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.