Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
102
В Думу одного государства избираются 450 депутатов по партийным спискам. Партия, набравшая максимум голосов (такая всегда есть) получает право по своему усмотрению
Задачу решили:
11
всего попыток:
24
На каждой из 6 граней кубика изображена одна из цифр от 0 до 9. Так же и на другом кубе. Ставя два кубика рядом можно составить множество двузначных чисел. Например число 64 будет составлено так:
Подобрав цифры на гранях, можно отобразить все числа которые можно получить суммой двух кубов меньшие сотни ( n = a3 + b3, n < 100, a и b - натуральные). Эти числа: 02, 09, 16, 28, 35, 54, 65, 72, 91. Например, с помощью наборов {5, 4, 3, 2, 1, 0} и {9, 8, 5, 4, 3, 1} могут быть выложены все необходимые числа. При этом надо учесть, что цифры 6 и 9 выглядят одинаково и могут использоваться друг за друга, хотя наборы с этими цифрами считаются различными. Тогда как один и тот же набор цифр расположенный на гранях кубика иным образом считается тем же набором. То есть, {1, 2, 3, 4, 5, 6} и {3, 6, 4, 1, 2, 5} - одинаковые наборы; Сколько различных пар кубиков могут быть сложены во все числа представимые суммой пары кубов?
Задачу решили:
14
всего попыток:
28
Точки P(x1, y1) и Q(x2, y2) с целочисленными координатами вместе с точкой начала координат O(0, 0) образуют треугольник OPQ. Для 0 ≤ x1, y1, x2, y2 ≤ 2 всего 12 треугольников с углом 45 градусов. Вот координаты соответствующих им точек P и Q: (0, 1) (1, 0) Треугольники где изменен только порядок точек P и Q, считаются одинаковыми. Сколько различных треугольников с углом 45 градусов, если координаты точек находятся в пределах: 0 ≤ x1, y1, x2, y2 ≤ 100?
Задачу решили:
23
всего попыток:
33
Составим последовательность чисел следующим образом: Пусть первое число n, а каждое следующее - сумма квадратов цифр предыдущего числа в шестнадцатеричной системе отсчета. Оказывается, независимо от начального числа последовательность зациклится. Либо зациклится числом 1, либо циклом содержащим 50 (3216). Например: 5 → 19 → 52 → 1D → AA → C8 → D0 → A9 → B5 → 92 → 55 → 32 → A9 → → B5 → 92 → 55 → 32; 2 → 4 → 10 → 1 → 1 Для всех начальных номеров n последовательности меньших 100000016 определите содержит ли последовательность 50 (3216) и в ответе укажите количество последовательностей содержащих 50 (3216).
Задачу решили:
133
всего попыток:
189
Полоска бумаги состоит из 2048 клеток. Полоску сгибают ровно пополам так, что правый конец наложился на левый. Затем эту процедуру продолжают до тех пор, пока не останется одна клетка. На какое место от начала полоски нужно поставить отметку, чтобы она оказалась на самом верху?
Задачу решили:
29
всего попыток:
47
Дана таблица из чисел, надо найти минимальный путь левого верхнего угла до правого нижнего. Возможны только движения: вправо, вниз и вправо-вниз. Длина пути считается так: число в левом верхнем углу, и каждый ход к данному числу прибавляется число на которое мы переходим, если движения вправо и вниз, и удвоенное число на которое мы переходим, если движение вправо-вниз. Пример кратчайшего пути для таблицы 4 на 4: 40,35,13,32 Найдите длину минимального пути в таблице 40 на 40: 71,78,41,12,23,40,74,98,98,92,98,46,63,99,44,46,83,78,18,48,21,84,18,69,41,57,91,25,33,12,63,22,84,18,37,11,15,15,87,47
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
15
всего попыток:
172
За какое минимальное количество ходов конь, находящийся на шахматной доске, может гарантированно пройти 8 любых полей доски?
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Задачу решили:
21
всего попыток:
47
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12. Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу. Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|