img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 64
Задача опубликована: 22.03.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В записи

  *****
+
  *****
  -------
  ****1

вместо цифр в шестнадцатиричной системе счисления стоят звездочки, при этом первое слагаемое меньше второго. Какое количество вариантов решений существует?

Задачу решили: 11
всего попыток: 16
Задача опубликована: 29.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Пусть (a, b, c) - тройка сторон прямоугольного треугольника и c гипотенуза. Причем a, b и с - натуральные. Возможно сложить четыре таких треугольника вместе, чтобы составить квадрат с квадратным отверстием.

Например, 4 треугольника со сторонами (3, 4, 5) могут быть сложены вместе чтобы составить квадрат 5 на 5 с отверстием 1 на 1 посредине. При этом квадрат 5 на 5 можно замостить 25 квадратами 1 на 1 (такими как отверстие).

А для треугольника (5, 12, 13) отверстие будет 7 на 7, но квадратами 7 на 7 невозможно покрыть квадрат 13 на 13.

Какова сумма периметров прямоугольных треугольников (a, b, c), таких что a < b, длины сторон взаимнопросты (НОД(a, b, c) = 1) и для которых можно квадрат со стороной c покрыть квадратами равными образующемуся отверстию, среди прямоугольных треугольников с периметрами меньшими 100000000?

Задачу решили: 15
всего попыток: 22
Задача опубликована: 29.03.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В каждой ячейке квадрата размера 4 на 4 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми четырехзначными числами. Сколько различных простых квадратов существует?

Задачу решили: 6
всего попыток: 14
Задача опубликована: 05.04.10 08:00
Прислал: admin img
Источник: Международная олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Начальная конфигурация головоломки Рубика "магические квадратики" выглядит так:

1 2 3 4
8 7 6 5

 Разрешены такие преобразования:

  1. перестановка верхнего и нижнего рядов
  2. циклический сдвиг вправо на один квадрат (при этом левый нижний квадрат перемещается вверх и становится левым верхним)
  3. поворот по часовой стрелке четырех средних квадратов.

Конфигурацией головоломки называется любое положение квадратиков, которое возможно получить при помощи указанных преобразований.

За какое минимальное количество ходов можно гарантированно преобразовать произвольную конфигурацию в начальную.

Задачу решили: 10
всего попыток: 11
Задача опубликована: 05.04.10 08:00
Прислал: Dremov_Victor img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Рассмотрим степенной ряд AG(x)=x * G1+x2 * G2 + x3 * G3 + ... , где через Gk обозначен k-ый член последовательности 1, 4, 5, 9, 14, 23, ... , задаваемой рекуррентным соотношением
Gk = Gk - 1 + Gk - 2, G1 = 1 и G2 = 4.

Мы интересуемся такими x, для которых AG(x) является натуральным. 

Ниже для первых пяти натуральных чисел приведены соответствующие значения x.

x              AG(x)
(sqrt(5) - 1)/4    1
2/5    2
(sqrt(22) - 2)/6    3
(sqrt(137) — 5)/14    4
1/2    5

Мы будем называть число AG(x) золотым самородком, если x рациональное, так как с ростом AG(x) они встречаются все более и более редко. Так, например, двадцатый золотой самородок равен 211345365.

Найдите 40-й золотой самородок.

Задачу решили: 11
всего попыток: 23
Задача опубликована: 19.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натуральных чисел x, y, z их суммы и разности x + y, x - y, x + z, x - z, y + z и y - z являются квадратами натуральных чисел. Найдите минимальное значение x + y.

Задачу решили: 0
всего попыток: 6
Задача опубликована: 19.04.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, из которого такими ходами можно получить наибольшее количество различных простых чисел.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 26.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Ферма предложил Торричелли найти такое положение X, для которого сумма p + q + r обращается в минимум.
Торричелли удалось доказать, что если на сторонах треугольника ABC построить равносторонние треугольники AOB, BNC и AMC и описать вокруг них окружности, эти окружности пересекутся в общей точке T, лежащей внутри треугольника. Кроме того, он доказал, что точка T (называемая ныне точкой Торричелли-Ферма) минимизирует сумму p + q + r.


Оказывается, что когда сумма p + q + r обращается в минимум, AN = BM = CO = p + q + r, а отрезки AN, BM и CO также пересекаются в точке T.

Если для некоторого треугольника все числа a, b, c, p, q и r оказываются целыми, мы будем называть его треугольником Торричелли. Примером такого треугольника может служить треугольник со сторонами a = 399, b = 455 и c = 511.

Найдите сумму всех различных периметров треугольников Торричелли, не превышающих 300000.

Задачу решили: 34
всего попыток: 63
Задача опубликована: 26.04.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Первые 10 миллионов простых чисел записаны последовательно в ряд. Какое количество нулей находится на четных местах?

Задачу решили: 34
всего попыток: 69
Задача опубликована: 03.05.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: vsg (Виталий Гарнашевич)

Очень простое число это такое простое число, любые несколько первых цифр которого также являются простыми числами. Например, простое число 2333 является очень простым, т.к. числа 2, 23 и 233 также являются простыми. Найдите максимальное очень простое число.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.