Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
4
всего попыток:
6
Построим треугольник из натуральных чисел так, как показано на рисунке, и отметим в нем простые числа: 1 Каждое число в этом треугольнике может иметь до восьми соседей. Найдите max(S(n)) при 3000000<=n<3000010
Задачу решили:
0
всего попыток:
1
Подсчитать количество 100-значных натуральных чисел, в которых суммы цифр в двоичной и десятичной системах счисления совпадают.
Задачу решили:
2
всего попыток:
3
Возьмем некоторое вещественное число x, и будем рассматривать его рациональные приближения, записывая их в виде несократимой дроби p/q.
Задачу решили:
11
всего попыток:
31
Рассмотрим числа, обладающие следующими тремя свойствами:
Первые два числа, удовлетворяющие всем трем условиям – это 200 и 1992008. Сумма первых двух чисел, обладающих одновременно свойствами 1, 2 и 3 равна 1992208. Найдите сумму первых двухсот чисел, обладающих одновременно свойствами 1, 2 и 3.
Задачу решили:
6
всего попыток:
15
Для числового множества A обозначим через sum(A) сумму его элементов. Вычислим суммы для всех 20 трехэлементных подмножеств множества B: Теперь рассмотрим множество S, состоящее из 120 элементов:
Задачу решили:
12
всего попыток:
15
Рассмотрим треугольник Паскаля: 1 В первых восьми его строках содержится 12 различных чисел:
Задачу решили:
18
всего попыток:
27
Числами Хэмминга называются такие натуральные числа, у которых нет простых делителей, больших, чем 5. Вот первые числа Хэмминга: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15. Их сумма равна 75. Существует 1105 чисел Хэмминга, не превышающих 108. Их сумма равна 14954859000 Если у натурального числа нет простых делителей, превышающих n, мы будем называть его обобщенным числом Хэмминга типа n. Например, числа Хэмминга являются обобщенными числами Хэмминга типа 5. Найдите сумму обобщенных чисел Хэмминга типа 70, не превышающих 2?109.
Задачу решили:
11
всего попыток:
45
Оля и Дима играют в кости.
Задачу решили:
30
всего попыток:
35
На доске записали 17-значное число, являющееся полным квадратом. Затем 8 цифр стерли и заменили их звездочками. Вот, что получилось:
Задачу решили:
7
всего попыток:
17
Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).
Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|