Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
73
Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям: a1 делится на 1; a1a2 делится на 2; a1a2a3 делится на 3; ... a1a2a3...a24 делится на 24.
Задачу решили:
34
всего попыток:
195
Квадрат размером 1024 на 1024 клетки складывается относительно вертикали сначала так, чтобы правый край наложился на левый, а затем относительно горизонтали, чтобы нижний край наложился на верхний. Операция продолжается до тех пор, пока не останется одна клетка. Клетки изначально были пронумерованы числами снизу "змейкой": самый нижний ряд - слева направо, второй ряд - справа налево продолжает нумерацию и так далее до самого верха. Какую клетку нужно отметить, чтобы в результате складывания она оказалась на самом верху?
Задачу решили:
6
всего попыток:
8
Вова и Дима играют в числовую угадайку: Вова задумывает число, а Дима пытается его угадать. После каждой попытки Вова сообщает Диме количество угаданных цифр. Например, Вова задумал число 1234, а Дима предположил, что число равно 2036. Вова сообщает ему, что угадана одна цифра. Действительно, цифра 3 стоит в обоих числах на одном и том же месте. О том, что есть еще цифра 2, которая есть в обоих числах, но на разных позициях, Вова Диме не говорит.
Дима долго думал и нашел все оставшиеся варианты. Найдите их и вы, а в качестве ответа укажите их сумму.
Задачу решили:
7
всего попыток:
17
Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).
Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
Задачу решили:
0
всего попыток:
0
Вообразите бесконечный в оба конца ряд чаш, перенумерованных целыми числами. В некоторых чашах лежат бобы. Разрешается делать ходы следующего вида: взять два боба из одной чаши и разложить их в две соседние. Игра заканчивается, когда сделать ход невозможно. В примере на рисунке в две соседние чаши положили 2 и 3 боба, а остальные чаши оставили пустыми. Как видно, такую игру можно закончить за 8 ходов.
Рассмотрим последовательность целых чисел bi следующего вида: b0 = 0, b1 = 289, b2 = 145 bi = (bi-1 + bi-2 + bi-3) mod 2013, где x mod y означает остаток от деления x на у. Пусть количество бобов в двух соседних чашах определяется числами b1 = 289 и b2 = 145, а остальные чаши в начальном положении пусты. В этом случае игру можно закончить за 3419100 ходов. Подсчитайте, сколько ходов потребуется для завершения игры , если в начальном положении в чашах с номерами от 1 до 1500 лежит b1, b2, ... b1500 бобов, соответственно, а остальные чаши пусты.
Задачу решили:
1
всего попыток:
2
В фигуре на верхнем чертеже содержатся k3 треугольников, k4 четырёхугольников, k5 пятиугольников, k6 шестиугольников и так далее. В фигуре на нижнем чертеже показан один из 10-угольников. Найдите сколько всего многоугольников kn для n=3, 4, 5,... содержится в верхней фигуре. В ответ вводите все ненулевые числа kn подряд без пробелов слева направо: k3k4k5... и так далее.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|