img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 30
Задача опубликована: 06.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: SA

Суперферзь отличается от обычного тем, что он может ходить и как конь. Сколькими способами можно расствить 14 суперферзей на шахматной доске размера 14 на 14 таким образом, чтобы ни один суперферзь не находился под ударом другого суперферзя? Позиции, получающиеся друг от друга поворотом или зеркальным отображением, считаются разными.

Задачу решили: 3
всего попыток: 12
Задача опубликована: 26.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

На складах 'A' и 'B' хранятся деликатесы в следующих количествах:

Наименование товара Склад 'A',
кол-во упаковок
Склад 'B',
кол-во упаковок
Белужья икра 5248 640
Рождественский кекс 1312 1888
Окорок 2624 3776
Марочный портвейн 5760 3776
Шампанские трюфели 3936 5664

Обратите внимание на то, что количество каждого продукта измеряется упаковками, т.е. целым числом.

<page-break/>

Хотя хозяин всячески старается хранить деликатесы наилучшим образом, они иногда все-таки портятся.
Однажды хозяин решил проанализировать сохранность продуктов, используя два вида показателей:
• Доля испорченных для каждого из пяти видов продуктов и для каждого склада, которая рассчитывалась как отношение количества испорченного продукта на данном складе к количеству данного продукта на данном складе.
• Общая доля испорченных продуктов для каждого склада, которая рассчитывалось как общее количество испорченных продуктов на складе к общему количеству всех продуктов на данном складе.
Выяснилось, что на складе 'B' доля испорченных продуктов каждого вида больше, чем на складе 'A'. При этом оказалось, что доля испорченных для каждого из пяти продуктов на складе B отличалась от доли испорченных для того же продукта на складе A одним и тем же множителем m>1, т.е. отношение долей испорченных продуктов для каждого из продуктов было одинаково.
Но самым удивительным было то, что общая доля испорченных продуктов на складе 'A' была больше, чем на складе 'B', и их отношение также было в точности равно m.
Оказывается, что эта странная ситуация не уникальна. Она может возникать при 35 различных значениях m>1, и при этом наименьшее общее количество испорченных продуктов на обоих складах вместе равно 215.
Найдите наибольшее количество упаковок, которое могло испортиться на обоих складах вместе в подобной удивительной ситуации.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 04.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Даны n натуральных чисел  1 < a1  < a2 < ... < an. Будем рассматривать их линейные комбинации вида  q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2  = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Также можно проверить, что h(6, 10, 15)=15, и h(14, 22, 77) = 98.
Найдите сумму всех h(p*q,p*r,q*r), где p, q и r ? простые числа, и p < q < r < 5000.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 26.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек.

Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203.

Можно подсчитать, что 

f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443

Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000

Задачу решили: 6
всего попыток: 14
Задача опубликована: 04.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени:

(√2+√3)2 = 9.898979485566356...

(√2+√3)4 = 97.98979485566356...

(√2+√3)6 = 969.998969071069263...

(√2+√3)8 = 9601.99989585502907...

(√2+√3)10 = 95049.999989479221...

(√2+√3)12 = 940897.9999989371855...

(√2+√3)14 = 9313929.99999989263...

(√2+√3)16 = 92198401.99999998915...

Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1.

В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n.

Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013.

Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 11.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:

  • x1 = 2
  • для всех 1 <  i ≤  n : xi-1 <  xi
  • для всех i и j из интервала 1 ≤ i, j ≤  n выполняется неравенство (xi)j <  (xj + 1)i

Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}.

Пусть t(n) — количество таких последовательностей длины n.

Тогда t(10) = 86195 и t(20) = 5227991891.

Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.

Задачу решили: 7
всего попыток: 7
Задача опубликована: 25.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Горизонтальная полоска состоит из 2n + 1 клеток. Средняя клетка оставлена пустой, слева от нее в n клетках стоят красные фишки, а справа – синие. На рисунке показано расположение фишек для случая n = 3.

eu321-1.png  

Фишки могут совершать ходы двух видов: шаги, когда фишка перемещается на соседнюю незанятую клетку, и скачки, когда одна фишка перепрыгивает через другую в следующую непосредственно за нею пустую клетку.

eu321-2.png  

Обозначим через M(n) минимальное количество ходов, необходимое для того, чтобы поменять местами синие и красные фишки, так, чтобы красные фишки оказались справа от центра, а синие – слева.

Легко проверить, что M(3) = 15, а 15 является треугольным числом.

Построим последовательность таких n, для которых M(n) является треугольным числом.

В этой последовательности ровно пять чисел, не превышающих 100, а именно 1, 3, 10, 22 и 63. Их сумма равна 99.

Найдите сумму всех n, не превышающих 1017, для которых M(n) является треугольным числом.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 13.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Несколько комнат последовательно соединены автоматическими дверями, как показано на рисунке.

 eu327.png

Двери открывают с помощью карт доступа. При этом каждую карту можно использовать лишь однажды: когда вы проходите в комнату, двери за вами автоматически закрываются, а карта не возвращается. Аппарат в начале маршрута может выдать вам в любое время любое количество карт без ограничений, однако система слежения не позволяет иметь на руках более трех карт одновременно. При нарушении этого правила срабатывает сигнал тревоги, а все двери запираются навсегда. Поэтому если вы возьмете при входе три карты и пойдете прямо к выходу, то в комнате №3 у вас карт не останется, и вы окажетесь в ней заперты с обеих сторон.

К счастью, в каждой комнате есть сейф, куда можно складывать карты в любом количестве.

Пользуясь этими сейфами, вы сможете достичь выхода. Например, вы можете войти в комнату № 1, использовав одну карту, положить вторую карту в сейф, а с помощью третьей карты вернуться к началу маршрута. Получив там в аппарате еще три карты, вы используете одну, чтобы войти в комнату №1 и взять там из сейфа оставленную карту. Теперь у вас в руках снова будет три карты, и этого достаточно, чтобы открыть три оставшиеся до выхода двери. Итак, вы можете пройти анфиладу из трех комнат, использовав всего 6 карт.

6 комнат можно пройти, используя 123 карты и не имея на руках более 3 карт одновременно.

Пусть C - максимальное количество карт, которые можно иметь при себе.

Пусть R - количество комнат, через которые нужно пройти от входа (“Start”) до выхода (“Finish”).

Обозначим через M(C,R) минимальное количество карт, необходимых для прохода через R комнат, имея при себе не более C карт в каждый момент времени.

Например, M(3,6)=123 и M(3,7)=366.

Поэтому ΣM(3,R)=489 при 6≤R≤7.

Можно подсчитать, что ΣM(5,R)=2841 при 1≤R≤15.

Найдите ΣM(5,R) при 1≤R≤60.

Задачу решили: 9
всего попыток: 14
Задача опубликована: 15.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Вагоны поезда обозначены буквами латинского алфавита: A,B,C,D..., и последовательность вагонов в железнодорожном составе можно задать с помощью соответствующей цепочки букв.

В правильно сформированном составе вагоны должны следовать алфавитном порядке. Добиваются этого на сортировочной станции, где установлен большой поворотный круг.

Когда состав въезжает на круг, несколько последних вагонов отцепляют, после чего локомотив с остальными вагонами съезжает с круга. Вагоны, стоящие на круге, поворачивают на 180 градусов и вновь прицепляют в хвост состава, но уже в обратном порядке. Эту операцию повторяют несколько раз, пока не достигают желаемого результата.

В некоторых случаях сформировать состав совсем просто. Например, когда исходный порядок вагонов ADCB, вагоны можно расцепить между A и D, затем развернуть фрагмент DCB, и, наконец, сцепить вагоны в нужном порядке. Результат достигается всего за один шаг, т.е. за один поворот круга на 180 градусов.

Возможно, процесс можно оптимизировать, но машинист пользуется совсем простым алгоритмом. Сначала он стремиться прицепить вагон A следом за паровозом, затем следом за ним вагон B, и так далее.

Машинист выяснил, что для состава из четырех вагонов потребуется не более 5 шагов. Максимальное количество - 5 операций - требуется для двух начальных последовательностей, а именно DACB и DBAC. Последовательности вагонов, требующие наибольшего количества операций для упорядочения, будем называть пессимальными.

Порядок формирования состава для начальной последовательности  DACB показан на рисунке.

eu336.png  

Для состава из шести вагонов машинист составил список пессимальных последовательностей. Список содержал 24 последовательности. Последовательности он расположил в алфавитном порядке, и цепочка DFAECB оказалась на десятом месте от начала.

Представьте, что вам поручили составить список пессимальных последовательностей для составов из 11 вагонов и упорядочить получившийся список в алфавитном порядке.

На каком месте в списке окажется последовательность CIAKBGHFJDE?

Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.03.21 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2141 раздела МАТЕМАТИКА
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Сколькими различными способами можно разрезать шестиугольник из 54-х одинаковых равносторонних треугольников по линиям сетки на три конгруэнтных n–угольника?

Шестиугольник и 54 треугольника

Разрезания, являющиеся симметрическими отображениями друг друга, считать только один раз. Т.е., нужно найти количество «неконгруэнтных разрезаний».

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.