Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
103
Изобретение головоломки, завоевавшей популярность под японским именем "судоку" иногда приписывают Леонарду Эйлеру, написавшем книгу о латинских квадратах. Задача заключается в заполнении цифрами от 1 до 9 пустых клеток в таблице 9x9. При этом в каждой строке, каждом столбце и в каждом малом квадрате 3x3 каждая цифра должна встречаться ровно 1 раз. Сколько решений имеет задача на следующем рисунке?
Задачу решили:
12
всего попыток:
22
Если мы знаем только k членов последовательности, мы не можем однозначно описать следующий ее член с помощью многочленов.
Задачу решили:
10
всего попыток:
36
Изучим целые положительные решения уравнения при различных натуральных n. Для какого n, не превышающего 15·1015, уравнение будет иметь больше всего решений?
Задачу решили:
17
всего попыток:
46
Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
(Можно решить при помощи карандаша и бумаги)
Задачу решили:
32
всего попыток:
49
Найдите сумму первых 100 цифр после запятой числа sin(sin(sin...(sin 1)...)) (sin повторяется 10 раз).
Задачу решили:
33
всего попыток:
57
Шахматный конь ходит буквой "Г" - сначала в одну сторону на 2 клетки, а потом влево или вправо на одну. Новая шахматная фигура баран ходит как и конь, только сначала он ходит на 3 клетки. Баран начал ходить с поля a1. Какое максимальное количество клеток он может посетить (включая первую) и при этом не наступая ни на одну из клеток дважды.
Задачу решили:
12
всего попыток:
33
Рассмотрим равнобедренный треугольник с основанием b = 16 и боковыми сторонами L = 17.
Задачу решили:
8
всего попыток:
11
Поделим с остатком натуральное число n на d. Пусть неполное частное равно q, а остаток r. Иногда числа d, q и r, записанные в некотором порядке, образуют геометрическую прогрессию.
Задачу решили:
8
всего попыток:
14
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|