img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 57
Задача опубликована: 22.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

Шахматный конь ходит буквой "Г" - сначала в одну сторону на 2 клетки, а потом влево или вправо на одну. Новая шахматная фигура баран ходит как и конь, только сначала он ходит на 3 клетки.

Баран начал ходить с поля a1. Какое максимальное количество клеток он может посетить (включая первую) и при этом не наступая ни на одну из клеток дважды.  

Задачу решили: 12
всего попыток: 33
Задача опубликована: 22.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим равнобедренный треугольник с основанием b = 16 и боковыми сторонами L = 17.

Применяя теорему Пифагора, видим, что высота треугольника
h = √(172 - 82) = 15, что на единицу меньше основания.
Для b = 272 и L = 305 мы имеем h = 273, что на единицу больше основания, и это второй по величине равнобедренный треугольник со свойством h = b ± 1.

Найдите сумму периметров десяти наименьших равнобедренных треугольников, для которых h = b ± 1 и b, L натуральные числа.

Задачу решили: 8
всего попыток: 14
Задача опубликована: 24.05.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?

Задачу решили: 51
всего попыток: 92
Задача опубликована: 28.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: katalama (Иван Максин)

Цепочки цифр (строки) создаются по следующему правилу:
Первая строка состоит из двух цифр "1". Каждая из последующих цепочек создается такими действиями: берется цифра, на единицу большая максимальной цифры, использовавшейся в предыдущей строке. Эта цифра вставляется в начало, в конец и между всеми цифрами предыдущей строки. Вот первые 4 строки, созданные по этому правилу:
(1) 11
(2) 21212
(3) 32313231323
(4) 43424341434243414342434

Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.

Задачу решили: 5
всего попыток: 22
Задача опубликована: 26.07.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел.

Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения.

Сколько существует различных "круговых" цепочек состоящих из всех костяшек?

Задачу решили: 13
всего попыток: 30
Задача опубликована: 06.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: SA

Суперферзь отличается от обычного тем, что он может ходить и как конь. Сколькими способами можно расствить 14 суперферзей на шахматной доске размера 14 на 14 таким образом, чтобы ни один суперферзь не находился под ударом другого суперферзя? Позиции, получающиеся друг от друга поворотом или зеркальным отображением, считаются разными.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 28.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим граф, составленный из блоков A и B, показанных на рисунке:

A B

Блоки соединяются вдоль вертикальных ребер в различном порядке, например, вот так:

Вершины графа будем раскрашивать, используя не более c цветов таким образом, чтобы связанные ребром вершины были окрашены в разные цвета.

Теперь подсчитаем, сколько разноцветных графов можно составить, используя a блоков A, b блоков B и не более c цветов.
Используя один блок A и три цвета, можно получить 24 различных графа. (a=1, b=0, c=3)
Используя два блока B и четыре цвета, можно получить 92928 различных графа. (a=0, b=2, c=4)
Используя два блока A, два блока B и три цвета, можно получить 20736 различных графа. (a=2, b=2, c=3)
А сколько различных графов можно получить, используя не более c=2011 цветов и 100 блоков A или B (a+b=100), так, чтобы a и b были четными числами?
В качестве ответа укажите 8 последних цифр результата.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 18.07.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

В игру "Погоня" играет четное количество игроков за круглым столом двумя игральными костями.
В начале игры два игрока, сидящие друг напротив друга, получают каждый по кости. Каждую секунду игроки, получившие кость, делают ход. Для этого они одновременно бросают кубик, и если выпадает 1, они передают кость соседу слева, а если выпадет 6 – соседу справа. В остальных случаях кубик остается у игрока до следующего хода. Игра заканчивается, когда оба кубика после очередного хода окажутся у одного игрока. Этот игрок считается проигравшим.
Однажды за стол сели играть 100 игроков. Их перенумеровали подряд по часовой стрелке. Спустя некоторое время кубики оказались у игроков № 33 и № 77.
Каково ожидаемое время до конца игры?
Ответ дайте в миллисекундах, округлив его до целого.

Задачу решили: 5
всего попыток: 43
Задача опубликована: 10.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?

Задачу решили: 5
всего попыток: 12
Задача опубликована: 24.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим множество, состоящее из первых n натуральных чисел: {1,2,...,n}.
Обозначим через f(n,k) количество его k-элементных подмножеств, сумма элементов которых нечетна. Например, f(5,3) =4, поскольку множество {1,2,3,4,5} имеет четыре 3-элементных подмножества с нечетной суммой элементов: {1,2,4}, {1,3,5}, {2,3,4} и {2,4,5}.
Когда все три числа n, k и f(n,k) нечетны, будем говорить, что они образуют нечетный триплет, и обозначим через g(m) количество нечетных триплетов [n,k,f(n,k)] с n ≤ m.
Тогда g(10)=5, поскольку существует ровно 5 нечетных триплетов с n ≤ 10, а именно:
[1,1,f(1,1)=1], [5,1,f(5,1)=3], [5,5,f(5,5)=1], [9,1,f(9,1)=5] и[9,9,f(9,9)=1]
Найдите наименьшее m, при котором g(m) > 1018.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.