img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 41
Задача опубликована: 29.10.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти количество единиц среди одного миллиона первых цифр десятичной записи числа sin (1).

Задачу решили: 12
всего попыток: 34
Задача опубликована: 16.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 200
Лучшее решение: Alias_Prudaev

На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?

Задачу решили: 14
всего попыток: 15
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: General (Алексей Извалов)

Замощение плоскости правильными шестиугольниками нумеруется начиная с 1 следующим образом: вначале один многоугольник выделяется и обозначается "1", затем против часовой стрелки начиная с направления вверх последовательно нумируется еще слой из 6 правильных многоугольников. И так далее каждый слой. Смотрите иллюстрацию, на ней пронумерованы первые три слоя.нумерация замощения

Для каждого числа n найдем модули разности между ним и его шестью соседями. Определим PD(n) количество простых модулей разности среди них.

Например, для числа 8 модули разности такие: 12, 29, 11, 6, 1 и 13. Таким образом PD(8) = 3.

А для числа 17 разности: 1, 17, 16, 1, 11 и 10, то есть PD(17) = 2.

Можно показать, что значения PD(n) не превосходит 3, для любых n.

Выпишите все n делящиеся на 5, начиная с меньших n, для которых PD(n) равно 3. В ответ запишите 1000-е такое n.

(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили: 27
всего попыток: 48
Задача опубликована: 28.12.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Найти сумму первых 2010 цифр после запятой значения корня степени 2010 из 2010.

Задачу решили: 10
всего попыток: 16
Задача опубликована: 08.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k.
Например, R(10) = 1111111111 = 11×41×271×9091, а сумма этих простых сомножителей равна 9414.
Найдите сумму первых двухсот простых сомножителей числа R(12!).

Задачу решили: 13
всего попыток: 49
Задача опубликована: 01.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Натуральные числа x, y и z являются последовательными членами арифметической прогрессии.

Для каждого n найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решений будет ровно 25. Минимальным таким n является 26880.

Найдите сумму всех n для которых ровно 25 решений, среди n меньших 1000000.

Задачу решили: 11
всего попыток: 15
Задача опубликована: 08.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Натуральные числа x, y и z являются последовательными членами арифметической прогрессии.

Для каждого n можно найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решение будет единственным. Например для n = 20, только одно решение 132 - 102 - 72 = 20.

Для n < 100 всего 25 таких n для которых решение единственно. Найдите сколько таких n, меньших 100000000.

Задачу решили: 12
всего попыток: 20
Задача опубликована: 15.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Рассмотрим степенной ряд AF(x) = x * F1+x 2 * F2 + x3 * F3 + ... , где через Fk обозначено k-ое число Фибоначчи. (Числа Фибоначчи: 1, 1, 2, 3, 5, 8, ... ; то есть F1 = 1, F2 = 1, F3 = 2, Fk = Fk-1 + Fk-2.)
В этой задаче нам интересны такие x, для которых AF(x) является натуральным. Неожиданно
AF(1/2) = (1/2)*1 + (1/2)2*1 + (1/2)3*2 + (1/2)4*3 + (1/2)5*5 + ...
= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...
= 2


Ниже для первых пяти натуральных чисел приведены соответствующие значения x.

 

x

AF(x)

√2-1

1
1/2

2

(13-2)/3

3

(89-5)/8

4

(34-3)/5

5

Мы будем называть число AF(x) золотым самородком, если x рациональное, так как с ростом AF(x) они встречаются все более и более редко. Так, например, десятый золотой самородок равен 74049690.
Найдите сумму первых 20 золотых самородков.

Задачу решили: 8
всего попыток: 14
Задача опубликована: 24.05.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?

Задачу решили: 15
всего попыток: 18
Задача опубликована: 31.05.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: falagar

Как известно, любое простое число p вида 4k+1 представимо в виде суммы двух квадратов натуральных чисел, причем единственным способом. Найдите такое представление для числа p=990702638520320711872233636311814629, то есть найдите такие натуральные числа x<y, что x2+y2=p. В ответе укажите x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.