Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
36
Изучим целые положительные решения уравнения при различных натуральных n. Для какого n, не превышающего 15·1015, уравнение будет иметь больше всего решений?
Задачу решили:
17
всего попыток:
46
Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
(Можно решить при помощи карандаша и бумаги)
Задачу решили:
12
всего попыток:
32
Найдите все натуральные x, y, z, такие что x+y+z < 10000000, x > y > z > 0 и x + y, x - y, x + z, x - z, y + z, y - z все являются полными квадратами. В ответ запишите сумму всех найденных чисел.
Задачу решили:
21
всего попыток:
59
На плоскости нарисован квадрат, одна вершина квадрата имеет координаты (0,0), а противополжная по диагонали - (1000,1000). В каждой точке с целочисленными координатами, находящейся внутри квадрата, размещено наименьшее простое число ближайшее к длине радиус-вектора из начала координат в данную точку. Найдите сумму все простых чисел, размещенных в квадрате.
Задачу решили:
19
всего попыток:
41
Найти количество единиц среди одного миллиона первых цифр десятичной записи числа sin (1).
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
32
всего попыток:
49
Найдите сумму первых 100 цифр после запятой числа sin(sin(sin...(sin 1)...)) (sin повторяется 10 раз).
Задачу решили:
14
всего попыток:
14
Наименьшее число единичных кубиков, необходимое, чтобы закрыть поверхность прямоугольного параллелепипеда 3х2х1, равно двадцати двум.
(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили:
14
всего попыток:
15
Замощение плоскости правильными шестиугольниками нумеруется начиная с 1 следующим образом: вначале один многоугольник выделяется и обозначается "1", затем против часовой стрелки начиная с направления вверх последовательно нумируется еще слой из 6 правильных многоугольников. И так далее каждый слой. Смотрите иллюстрацию, на ней пронумерованы первые три слоя. Для каждого числа n найдем модули разности между ним и его шестью соседями. Определим PD(n) количество простых модулей разности среди них. Например, для числа 8 модули разности такие: 12, 29, 11, 6, 1 и 13. Таким образом PD(8) = 3. А для числа 17 разности: 1, 17, 16, 1, 11 и 10, то есть PD(17) = 2. Можно показать, что значения PD(n) не превосходит 3, для любых n. Выпишите все n делящиеся на 5, начиная с меньших n, для которых PD(n) равно 3. В ответ запишите 1000-е такое n.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили:
27
всего попыток:
48
Найти сумму первых 2010 цифр после запятой значения корня степени 2010 из 2010.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|