img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 18
Задача опубликована: 10.09.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
баллы: 100

На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243.

Тот же граф можно представить следующей матрицей:

  A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -

Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.

 

Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой
wij =  wji = (69069(i - j)2(i + j))(mod 1000)

Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?

Задачу решили: 10
всего попыток: 36
Задача опубликована: 24.09.09 10:03
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Изучим целые положительные решения уравнения
1/x + 1/y =1/n

при различных натуральных n.
Для  n = 4 уравнение будет иметь ровно три различных решения:
1/5 + 1/20 = 1/4
1/6 + 1/12 = 1/4
1/8 + 1/8 = 1/4

Для какого n, не превышающего 15·1015, уравнение будет иметь больше всего решений?
Замечание: Эта задача - существенно усложненная версия задачи 197. Решить ее "в лоб" вряд ли удастся.

Задачу решили: 17
всего попыток: 46
Задача опубликована: 07.10.09 16:33
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
Аналогично, убывающим числом будем называть такое натуральное число, цифры которого не возрастают слева направо, например 864431.
Оказывается, что возрастающие числа встречаются реже, чем убывающие. Так, среди первых ста натуральных чисел имеется 54 возрастающих и 64 убывающих (18 чисел, состоящих из одинаковых цифр, являются сразу же и возрастающими, и убывающими), а в первой тысяче натуральных чисел - 219 возрастающих и 283 убывающих.
Обозначим через R(n) отношение количества убывающих чисел к количеству возрастающих среди первых n натуральных чисел. Например, оказывается, что R(11)=11/10, R(1127)=11/9.
Найти R(n), где n – число, состоящее из 111 единиц (Оказывается, это целое число).

(Можно решить при помощи карандаша и бумаги)
Задачу решили: 12
всего попыток: 32
Задача опубликована: 19.10.09 15:15
Прислал: morph img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найдите все натуральные x, y, z, такие что  x+y+z < 10000000x > y > z > 0 и x + y, x - y, x + z, x - z, y + z, y - z все являются полными квадратами. В ответ запишите сумму всех найденных чисел.

Задачу решили: 21
всего попыток: 59
Задача опубликована: 26.10.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

На плоскости нарисован квадрат, одна вершина квадрата имеет координаты (0,0), а противополжная по диагонали - (1000,1000). В каждой точке с целочисленными координатами, находящейся внутри квадрата, размещено наименьшее простое число ближайшее к длине радиус-вектора из начала координат в данную точку. Найдите сумму все простых чисел, размещенных в квадрате.

Задачу решили: 19
всего попыток: 41
Задача опубликована: 29.10.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти количество единиц среди одного миллиона первых цифр десятичной записи числа sin (1).

Задачу решили: 12
всего попыток: 34
Задача опубликована: 16.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 200
Лучшее решение: Alias_Prudaev

На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?

Задачу решили: 32
всего попыток: 49
Задача опубликована: 26.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Темы: алгебраimg

Найдите сумму первых 100 цифр после запятой числа sin(sin(sin...(sin 1)...)) (sin повторяется 10 раз).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.