img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 2
всего попыток: 2
Задача опубликована: 29.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

В данной задаче мы будем рассматривать "ориентированные" тетраэдры, координаты вершин которых имеют вид:
{(x, y, z), (x+a, y, z), (x,y+a,z), (x,y,z+a)}, a>0, и x,y,z,a – целые числа. Объем такого тетраэдра равен a3/6.
Если мы захотим найти общий объем объединения нескольких ориентированных тетраэдров, то, возможно, он окажется меньше суммы их объемов, если некоторые из тетраэдров пересекаются.
Построим последовательность ориентированных тетраэдров T1, T2, …, Tn,… следующим образом:
xn = S4n-3 (mod 10000)
yn = S4n-2 (mod 10000)
zn = S4n-1 (mod 10000)
an = 1+S4n (mod 699),
а Sk  получены при помощи генератора случайных чисел Фибоначчи с запаздываниями:
При 1≤k≤55, Sk = [100003 - 200003k + 300007k3] (mod 1000000), и при 56≤k, Sk = [Sk-24  + Sk-55 ] (mod 1000000).
(p (mod q) означает остаток от деления p на q.)
Таким образом, у тетраэдра T1 x =7, y=53, z=183, a=655, у тетраэдра T2 x =863, y=1497, z=2383, a=112 и т.д.
Объем объединения первых 300 ориентированных тетраэдров T1 … T300 равен 3999927695 (по счастливому совпадению это число оказалось целым).
Найдите объем объединения первых 50000 ориентированных тетраэдров T1 … T50000 (благодаря еще одному счастливому совпадению это число тоже целое).

Задачу решили: 16
всего попыток: 18
Задача опубликована: 04.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n.
Взяв некоторое число n,  будем строить цепочку n, φ(n), φ(φ(n)), φ(φ(φ(n)))…, пока не получим 1. Например, начав с 5, получим последовательность 5,4,2,1, содержащую 4 члена. Ниже приведены все последовательности, содержащие 4 члена.

5,4,2,1
7,6,2,1
8,4,2,1
9,6,2,1
10,4,2,1
12,4,2,1
14,6,2,1
18,6,2,1

Ровно две из них начинаются с простых чисел.
Найдите сумму всех простых чисел, не превышающих 40000000, с которых начинается последовательность длиной 25 и более членов.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 22.08.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим число
G(n) = (n2)!/(n!)n,
где n – натуральное. Несложно показать, что G(n) – тоже натуральное число.
Например, G(3)=1680. Разложим 1680 на простые множители, а затем их сложим:

1680=24×3×5×7=2×2×2×2×3×5×7,
и
2 + 2 + 2 + 2 + 3 + 5 +7 = 23.
Таким образом, сумма простых множителей числа G(3) равна 23.

Найдите сумму простых множителей числа G(4444).

Задачу решили: 5
всего попыток: 43
Задача опубликована: 10.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?

Задачу решили: 2
всего попыток: 5
Задача опубликована: 20.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Обозначим через σ(n) сумму делителей натурального числа n, например σ(6) = 1 + 2 + 3 + 6 = 12.
Для совершенных чисел n, как вы, вероятно, знаете, σ(n) = 2n. Поэтому назовем коэффициентом совершенства отношение p(n)=σ(n) / n. У совершенных чисел коэффициент совершенства равен 2.
Найдите сумму таких натуральных n < 1018, у которых коэффициент совершенства является несократимой дробью со знаменателем 3.

Задачу решили: 5
всего попыток: 12
Задача опубликована: 24.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим множество, состоящее из первых n натуральных чисел: {1,2,...,n}.
Обозначим через f(n,k) количество его k-элементных подмножеств, сумма элементов которых нечетна. Например, f(5,3) =4, поскольку множество {1,2,3,4,5} имеет четыре 3-элементных подмножества с нечетной суммой элементов: {1,2,4}, {1,3,5}, {2,3,4} и {2,4,5}.
Когда все три числа n, k и f(n,k) нечетны, будем говорить, что они образуют нечетный триплет, и обозначим через g(m) количество нечетных триплетов [n,k,f(n,k)] с n ≤ m.
Тогда g(10)=5, поскольку существует ровно 5 нечетных триплетов с n ≤ 10, а именно:
[1,1,f(1,1)=1], [5,1,f(5,1)=3], [5,5,f(5,5)=1], [9,1,f(9,1)=5] и[9,9,f(9,9)=1]
Найдите наименьшее m, при котором g(m) > 1018.

Задачу решили: 3
всего попыток: 7
Задача опубликована: 06.02.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть натуральное число k опорным, если существует такая пара натуральных чисел m≥0 и n≥k, для которых
(k-m)2 + ... + k2 = (n+1)2 + ... + (n+m)2,
то есть сумма m+1 последовательных квадратов вплоть до k2 включительно равна сумме m последовательных квадратов, начинающихся с (n+1)2, например:
4: 32 + 42 = 52
21: 202 + 212 = 292
24: 212 + 222 + 232 + 242 = 252 + 262 + 272
110: 1082 + 1092 + 1102 = 1332 + 1342
Найдите сумму всех различных опорных чисел в промежутке 109≤k≤1010.

Задачу решили: 7
всего попыток: 9
Задача опубликована: 16.07.12 08:00
Прислал: admin img
Источник:
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Трехзначное число 376 в десятичной системе счисления обладает одним интересным свойством: его квадрат заканчивается теми же цифрами 3, 7 и 6, 3762 = 141376.Будем называть натуральные числа, обладающие этим свойством, устойчивыми.

Устойчивые числа есть и в других системах счисления. Например, в системе счисления по основанию 14 устойчивым является число c37. Действительно, c372 = aa0c37. Наибольшее 10-значное устойчивое число в 14-ичной системе счисления равно 7337aa0c37. В десятичной записи это число равно 149429406721.

(В 14-ичной системе счисления буквами a, b, c и d мы обозначили цифры 10, 11, 12 и 13, подобно тому, как это делается в 16-ичной системе счисления.)

Найдите наибольшее 10000-значное устойчивое число в 14-ичной системе счисления, переведите его в десятичную систему, а в качестве ответа укажите 8 младших десятичных цифр.

 

Задачу решили: 6
всего попыток: 8
Задача опубликована: 10.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Назовем пифагоровым многоугольником выпуклый многоугольник, обладающий следующими свойствами:

  • Он имеет не менее  трех вершин
  • Никакие три его вершины не лежат на одной прямой
  • Все вершины имеют целые координаты
  • Все стороны многоугольника имеют целочисленную длину

Обозначим через Q(n) количество различных пифагоровых многоугольников, периметр которых равен n. При этом различными будем считать многоугольники, которые нельзя преобразовать друг в друга путем параллельного переноса.

Тогда Q(4)=1, Q(30) =1242, Q(60) =248282.

Найдите Q(120).

Задачу решили: 10
всего попыток: 12
Задача опубликована: 17.09.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Будем называть четное натуральное число N приемлемым, если все его различные простые делители являются последовательными простыми числами. В частности, все положительные степени 2 являются приемлемыми. Число N=630 приемлемо, поскольку оно четно, а его различные простые множители – 2,3,5,7 – это последовательные простые числа. Число N=660 неприемлемо, поскольку в последовательности его простых множителей – 2,3,5,11 – пропущено простое число 7. 

Если N – приемлемое число, то наименьшее число M>1, для которого N+M – простое число, будем называть псевдо-форчуновым числом приемлемого числа N.

Найдите наименьшее приемлемое N, для которого псевдо-форчуново число равно 97.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.