img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 95
Задача опубликована: 10.06.09 07:35
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим игру «монополия». Игровое поле следующее:

GO

A1

CC1

A2

T1

R1

B1

CH1

B2

B3

JAIL

H2

 

C1

T2

 

U1

H1

 

C2

CH3

 

C3

R4

 

R2

G3

 

D1

CC3

 

CC2

G2

 

D2

G1

 

D3

G2J

F3

U2

F2

F1

R3

E3

E2

CH2

E1

FP

Движение происходит следующим образом: каждый игрок своим ходом кидает два 6-гранных кубика, и сдвигает фишку на число клеток в сумме выпавших на кубиках. Исключением является случай, когда игрок три раза подряд выкидывает дубль (одинаковые числа на кубиках), в таком случае он попадает на клетку тюрьмы (JAIL). Также, если игрок сдвинув фишку попадает на «G2J», то он перемещается в тюрьму.

Игрок начинает с клетки GO и каждый ход бросает пару кубиков и свдигает фишку на сумму чисел выпавших на кубиках по часовой. Если бы не было дополнительных правил — ожидаемым было бы, что вероятности попадения на каждую клетку после броска равна 1/40. Но попадания на клетки G2J(Go to jail, отправляйтесь в тюрьму), CC(извещение) и CH(шанс) изменяет это распределение. Также существует правило, согласно которому если игрок выкидывает три раза дубль (одинаковые значения на кубиках), то вместо третьего хода он попадает в тюрьму.

Вначале игры все карты CC и CH перетасованы. Когда игрок становится на одну из таких клеток верхняя карта колоды снимается и после использования кладется под низ. В каждой стопке по 16 карт, часть из которых содержит предписания о перемещении на какую-то из клеток карты, остальные нам не важны. Вот эти карты:

  • Извещения (2/16 cards):

    1. к старту (GO)

    2. в тюрьму (JAIL)

  • Chance (10/16 cards):

    1. К старту (GO)

    2. В тюрьму (JAIL)

    3. На клетку C1

    4. На клетку E3

    5. На клетку H2

    6. На клетку R1

    7. К следующей клетке R (ЖД компания)

    8. К следующей клетке R

    9. К следующей клетке U (Коммунальное предприятие)

    10. Назад на 3 клетки

Ваша задача определить вероятность закончить ход на каждой из клеток после очередного броска кубиков. Очевидно что вероятность для Jail наибольшая, G2J нулевая. Считается что игрок не задерживается в тюрьме. Пронумеруем все клетки от 0(GO) до 39(H2) и найдем вероятности для каждой клетки. Три макимальные вероятности получаются для клеток JAIL(10), 6.24%; E3(24), 3.18% и GO(0), 3.09%.

В какой-то момент вы потеряли кубик и потому решили обходиться для игры монеткой, подкидывая ее три раза и считая что орел - 1, а решка - 2. При этом "дублем" считается выпадения все три раза либо орла, либо решки. Найдите при таком способе игры 5 наиболее популярных клеток и в ответе укажите сумму их номеров.

Задачу решили: 4
всего попыток: 11
Задача опубликована: 24.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

При изготовлении микросхемы, состоящей из n транзисторов, образовалось k микродефектов. Дефекты распределены случайным образом, каждый дефект оказался в одном из транзисторов, и в любом транзисторе могло оказаться любое количество дефектов. Если в каком-либо транзисторе оказалось три или более дефектов, такой транзистор не работает, и вся микросхема идет в брак.

Обозначим через E(n,k) математическое ожидание количества транзисторов, содержащих дефекты, в годной микросхеме. Например, E(13,3)≈2.78571...

Найдите E(1000000,20000), умножьте на 100000, а результат округлите до целого.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 02.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

"Передур же поехал дальше долиной реки, вдоль которой расстилались луга. И на одном берегу реки он увидел стадо белых овец, а на другом - стадо черных. И как только одна из белых овец блеяла, черная овца переплывала реку и становилась белой. Когда же блеяла черная овца, одна из белых овец переплывала реку и делалась черной"
Передур, сын Эвраука

Первоначально каждое стадо состоит из n овец. Каждая овца, независимо от масти, может заблеять в очередной раз. Передур стремится максимизировать количество черных овец. Для этого он может прогонять прочь любое количество белых овец, но делать это он может лишь после того, как заблеяла очередная овца и до того, как овца с противоположного берега вошла в реку.
Пусть E(n) – ожидаемое количество черных овец, которое останется у Передура при оптимальной стратегии. Например, E(5) ≈ 6.871346…
Найдите наименьшее n, для которого E(n)>20000.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.12.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Известно, что некий вирус поражает 2% овец. Ветеринару нужно выявить зараженных животных в стаде из 25 голов. При этом в его распоряжении имеется достаточно дорогой, но очень чувствительный метод анализа, позволяющий обнаруживать инфекцию в крови при крайне низких ее концентрациях.

Чтобы сэкономить дорогостоящие реактивы, ветеринар решил не проверять каждую овцу, а разработал следующую программу действий:
Он разбил стадо на 5 групп по 5 овец в каждой. Пробы крови для каждой группы были объединены и проанализированы. Затем, если в объединенной пробе вирус не обнаружен, все овцы из данной группы считаются здоровыми. В противном случае анализируются пробы крови для каждого из пяти животных группы.
Поскольку вероятность заражения отдельной овцы равна 0,02, первый тест для каждой группы даст
• Отрицательный результат с вероятностью 0,985 = 0,9039207968. Для такой группы дополнительные тесты не понадобятся.
• Положительный результат с вероятностью 1 - 0,9039207968 = 0,0960792032. Для такой группы потребуется проанализировать еще 5 отдельных проб.
Тогда ожидаемое количество анализов для каждой группы составит 1 + 0,0960792032 × 5 = 1,480396016, а для всего стада – 1,480396016 × 5 = 7,40198008 тестов, то есть экономия составит более 70%!
Однако это не предел. Алгоритм можно еще усовершенствовать следующим образом:
• Сначала можно проанализировать объединенную пробу для всех 25 овец. Легко проверить, что примерно в 60,35% случаев результат будет отрицательный, и дальнейшее исследование не потребуется.
• Если групповая проба для 5 овец была положительной, и первые четыре овцы из группы оказались здоровы, то пятую можно не проверять – она наверняка инфицирована.
• Можно попробовать поварьировать размер и количество групп. Это позволит минимизировать ожидаемое количество анализов.
Чтобы не усложнять задачу, мы несколько ограничим круг рассматриваемых алгоритмов. Мы примем следующее дополнительное правило: если проанализирована объединенная проба для группы овец, то овцы, не входящие в данную группу, не исследуются, пока не поставлен окончательный диагноз каждой овце из данной группы.
Оставаясь в рамках данного правила, мы можем найти оптимальную стратегию, позволяющую ограничиться всего 4,155452 тестами в среднем для стада из 25 овец и вероятности заражения 0,02.
Обозначим через T(s,p) ожидаемое количество тестов при использовании оптимальной стратегии, когда стадо состоит из s овец, а вероятность заражения отдельной овцы равна p.
Тогда T(25, 0,02) ≈ 4,155452 и T(25, 0,10) ≈ 12,702124.
Найдите p, для которого T(10000, p)=5000. Результат умножьте на миллион и округлите вниз до целого.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.