Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
57
Рассмотрим такие диофантовы уравнения: x2-Dy2=1. Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое: 6492-13*1802=1. Легко показать, что для D - полного квадрата решений не существует. Рассмотрим минимальные решения D <= 10: 32 - 2*22=1; 22 - 3*12=1; 92 - 5*42=1; 52 - 6*22=1; 82 - 7*32=1; 32 - 8*12=1; 192 - 10*62=1. Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10. Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.
Задачу решили:
61
всего попыток:
97
Число π начинается с комбинации цифр 3,14159... Найдите первое вхождение последовательности цифр "314" в десятичной записи числа π после запятой. В ответ введите количество знаков после запятой до этой последовательности.
Задачу решили:
20
всего попыток:
26
Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42. 1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1. Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили:
6
всего попыток:
25
Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.
Задачу решили:
37
всего попыток:
45
Найдите минимальное n при котором в записи 3n числа имеется 7 подряд идущих нулей.
Задачу решили:
9
всего попыток:
27
Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что ровно 2 ферзя бьют друг друга?
Задачу решили:
17
всего попыток:
27
Матрица размером 100 на 100 элементов заполняется таким образом: в позиции с координатами (i,j) размещается цифра, находящаяся на i*j месте после запятой в записи числа π, если эта цифра четная, то она записывается с положительным знаком, если нет - с отрицательным. Рассмотрим "внутренние" матрицы 10 на 10, состоящие из элементов: am,n, am+1,n,...,am+9,n, Суммой матрицы назовем сумму ее элементов. Найдите максимальное значение суммы среди всех "внутренних" матриц.
Задачу решили:
1
всего попыток:
2
Найдите количество различных троек натуральных чисел x < y < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).
Задачу решили:
9
всего попыток:
26
Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом: u(0) = 109 Найдите u(1018).
Задачу решили:
6
всего попыток:
6
Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч. Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|