img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 26
всего попыток: 57
Задача опубликована: 18.05.09 13:54
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 300

Рассмотрим такие диофантовы уравнения:

x2-Dy2=1.

Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое:

6492-13*1802=1.

Легко показать, что для D - полного квадрата решений не существует.

Рассмотрим минимальные решения D <= 10:

32 - 2*22=1;

22 - 3*12=1;

92 - 5*42=1;

52 - 6*22=1;

82 - 7*32=1;

32 - 8*12=1;

192 - 10*62=1.

Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10.

Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.

Задачу решили: 61
всего попыток: 97
Задача опубликована: 02.11.09 08:00
Прислал: admin img
Вес: 2
сложность: 3 img
баллы: 500
Лучшее решение: leonidr321 (Леонид Розенблат)

Число π начинается с комбинации цифр 3,14159... Найдите первое вхождение последовательности цифр "314" в десятичной записи числа π после запятой. В ответ введите количество знаков после запятой до этой последовательности. 

Задачу решили: 20
всего попыток: 26
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42.
Будем рассматривать тройки натуральных чисел (a, b, c) обладающие следующими свойствами:

1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1.
2. a < b
3. a + b = c
4. rad(abc) < c

Например, такой тройкой является (5, 27, 32):
НОД(5, 27) = НОД(5, 32) = НОД(27, 32) = 1
5 < 27
5 + 27 = 32
rad(4320) = 30 < 32

Для некоторых c имеется более одной такой тройки (a, b, c). До 10000 таких c всего 15.

Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.

(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили: 6
всего попыток: 25
Задача опубликована: 12.04.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 3 img
баллы: 300

Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.

Задачу решили: 37
всего попыток: 45
Задача опубликована: 29.11.10 08:00
Прислал: admin img
Вес: 3
сложность: 3 img
баллы: 100

Найдите минимальное n при котором в записи 3n числа имеется 7 подряд идущих нулей.

Задачу решили: 9
всего попыток: 27
Задача опубликована: 20.12.10 08:00
Прислал: admin img
Вес: 3
сложность: 3 img
баллы: 200
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что ровно 2 ферзя бьют друг друга?

Задачу решили: 17
всего попыток: 27
Задача опубликована: 10.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 300
Лучшее решение: Oleg (Олег Пилипёнок)

Матрица размером 100 на 100 элементов заполняется таким образом: в позиции с координатами (i,j) размещается цифра, находящаяся на i*j месте после запятой в записи числа π, если эта цифра четная, то она записывается с положительным знаком, если нет - с отрицательным.

Рассмотрим "внутренние" матрицы 10 на 10, состоящие из элементов:

am,n, am+1,n,...,am+9,n,
am,n+1, am+1,n+1,...,am+9,n+1,
...
am,n+9, am+1,n+9,...,am+9,n+9.

Суммой матрицы назовем сумму ее элементов. Найдите максимальное значение суммы среди всех "внутренних" матриц.

Задачу решили: 1
всего попыток: 2
Задача опубликована: 17.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100

Найдите количество различных троек натуральных чисел x < y  < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).

Задачу решили: 9
всего попыток: 26
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом:

u(0) = 109
u(n+1) = f(u(n))

Найдите u(1018).

Задачу решили: 6
всего попыток: 6
Задача опубликована: 06.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч.
На рисунке показан путь луча, который прошел сквозь щель в вершине C, 11 раз отразился от зеркал и вышел из треугольника через ту же вершину C. Существует всего 2 пути, по которым луч может войти и выйти через вершину C, испытав при этом 11 отражений: один – это тот, что изображен на рисунке, а другой – направленный ему навстречу.

Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Существует 40 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал 697 раз и выйти из треугольника через ту же вершину.
Существует 9355 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 700 раз и выйти из треугольника через ту же вершину.
Сколько существует траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 100000 раз и выйти из треугольника через ту же вершину.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.