Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Задачу решили:
21
всего попыток:
47
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12. Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу. Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Задачу решили:
0
всего попыток:
3
Клетки шахматной доски размером 8x8 обозначены стандартным способом по горизонтали буквами "a-h" и по вертикали цифрами "1-8". У вас имеются по 8 комплектов каждой буквы и каждой цифры и вы размещаете на каждой клетке одну букву и одну цифру, таким образом, чтобы полученный номер не совпадал со стандартным (должна отличаться или буква или цифра). Найдите количество таких размещений и введите в ответ сумму цифр полученного числа.
Задачу решили:
26
всего попыток:
31
Собственным делителем числа называется всякий его делитель, отличный от самого числа. Например, для числа 28 собственные делители - это 1, 2, 4, 7 и 14. Их сумма равна исходному числу 28, и за это его называют совершенным. Сумма собственных делителей числа 220 равна 284, а сумма собственных делителей 284 равна 220. Подобные пары чисел называют дружественными. Они образуют контур из двух элементов. Есть контуры и подлиннее. Например, начав с числа 12496, мы можем построить контур из пяти элементов: 12496 → 14288 → 15472 → 14536 → 14264 (→ 12496 → ...) Построенную таким образом последовательность, начинающуюся и заканчивающуюся одним и тем же числом, мы будем называть дружественным контуром. Найдите сумму элементов самого длинного дружественного контура, состоящего из чисел, не превышающих 1 000 000.
Задачу решили:
24
всего попыток:
103
Изобретение головоломки, завоевавшей популярность под японским именем "судоку" иногда приписывают Леонарду Эйлеру, написавшем книгу о латинских квадратах. Задача заключается в заполнении цифрами от 1 до 9 пустых клеток в таблице 9x9. При этом в каждой строке, каждом столбце и в каждом малом квадрате 3x3 каждая цифра должна встречаться ровно 1 раз. Сколько решений имеет задача на следующем рисунке?
Задачу решили:
34
всего попыток:
195
Квадрат размером 1024 на 1024 клетки складывается относительно вертикали сначала так, чтобы правый край наложился на левый, а затем относительно горизонтали, чтобы нижний край наложился на верхний. Операция продолжается до тех пор, пока не останется одна клетка. Клетки изначально были пронумерованы числами снизу "змейкой": самый нижний ряд - слева направо, второй ряд - справа налево продолжает нумерацию и так далее до самого верха. Какую клетку нужно отметить, чтобы в результате складывания она оказалась на самом верху?
Задачу решили:
54
всего попыток:
65
Парой простых называются два простых числа, разность между которыми 2. Наибольшая известная сейчас пара простых это: 2003663613*2195000 - 1 и 2003663613*2195000 + 1. Каждое состоящее из 58711 цифр. Найдите последние 10 цифр их произведения и укажите их в ответе.
Задачу решили:
57
всего попыток:
106
Чему равна сумма цифр находящихся на местах с простыми номерами в десятичной записи числа 210000?
Задачу решили:
46
всего попыток:
84
Найти сумму всех натуральных чисел меньших миллиона в записи которых во всех системах счисления с основаниями от 2 до 10 нет подряд идущих двух нулей?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|