Лента событий:
TALMON предложил задачу "Целочисленные точки на эллипсах - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
67
Найти сумму цифр первого простого натурального числа содержащего 2010 цифр.
Задачу решили:
18
всего попыток:
19
Обозначим через pn n-ое простое число, а через rn- остаток от деления (pn-1)n + (pn+1)n на pn2.
Задачу решили:
63
всего попыток:
84
Найти наименьшее n, для которого n! имеет не менее 2010 цифр.
Задачу решили:
39
всего попыток:
56
Найти сумму первых 2010 цифр после запятой числа: 1/2+1/3+1/4+...+1/2009+1/2010
Задачу решили:
94
всего попыток:
108
Найти 3 последние цифры числа 20092010.
Задачу решили:
28
всего попыток:
54
Палиндромами называют числа, десятичные знаки которых расположены симметрично. Палиндром 595 интересен тем, что его можно представить в виде суммы семи последовательных квадратов натуральных чисел: 62 + 72 + 82 + 92 + 102 + 112 + 122. Существует ровно 5 палиндромов, не превышающих 1000, которые можно представить в виде суммы 5 и более последовательных квадратов. Их сумма равна 2609. Найдите сумму всех палиндромов, не превышающих 108, которые можно представить в виде суммы 5 и более последовательных квадратов.
(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили:
14
всего попыток:
15
Замощение плоскости правильными шестиугольниками нумеруется начиная с 1 следующим образом: вначале один многоугольник выделяется и обозначается "1", затем против часовой стрелки начиная с направления вверх последовательно нумируется еще слой из 6 правильных многоугольников. И так далее каждый слой. Смотрите иллюстрацию, на ней пронумерованы первые три слоя. Для каждого числа n найдем модули разности между ним и его шестью соседями. Определим PD(n) количество простых модулей разности среди них. Например, для числа 8 модули разности такие: 12, 29, 11, 6, 1 и 13. Таким образом PD(8) = 3. А для числа 17 разности: 1, 17, 16, 1, 11 и 10, то есть PD(17) = 2. Можно показать, что значения PD(n) не превосходит 3, для любых n. Выпишите все n делящиеся на 5, начиная с меньших n, для которых PD(n) равно 3. В ответ запишите 1000-е такое n.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили:
27
всего попыток:
48
Найти сумму первых 2010 цифр после запятой значения корня степени 2010 из 2010.
Задачу решили:
71
всего попыток:
145
При каком минимальном натуральном n число вида 9n-7n делится на 1000?
Задачу решили:
24
всего попыток:
44
Найдите количество простых чисел, больших 100, цифры каждого из которых в порядке их следования в десятичной записи образуют арифметическую прогрессию с ненулевой разностью.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|