img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 8
Задача опубликована: 18.01.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Рассмотрим "единичные" числа, числа состоящие из нескольких цифр "1". Обозначим R(k) число состоящее из k единиц; например, R(6) = 111111.

Пусть n - натуральное и НОД(n, 10) = 1. Тогда можно показать, что всегда найдется k, такое что R(k) делится на n, обозначим A(n) минимальное из подходящих k. Например, A(7) = 6, А(41) = 5.

Нас интересует отношение n/A(n). Для n<90, n для которого отношение n/A(n) минимально равно 61

Найдите n для которого n/A(n) минимально среди n<1234567.

Задачу решили: 27
всего попыток: 45
Задача опубликована: 25.01.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Натуральное число N назовем "некрасивым", если оно не может быть представлено в виде суммы некоторого натурального числа M и всех цифр числа M. Найдите сумму всех "некрасивых" чисел, меньших 10 миллионов.

Задачу решили: 23
всего попыток: 65
Задача опубликована: 01.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Натуральное число N назовем "очень красивым", если оно может быть представлено в виде произведения некоторого натурального числа M и всех цифр числа M. Найдите сумму всех "очень красивых" чисел меньших 10 миллионов.

Задачу решили: 12
всего попыток: 12
Задача опубликована: 01.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для некоторых простых чисел p можно найти такое натуральное n, для которого выражение n3+ n2p является точным кубом.
Например, если p=19, то 83+ 82×19=123.
Оказывается, для каждого простого p можно найти не более одного подходящего значения n, и есть только четыре подходящих простых числа, не превышающих сотни.
Найдите сумму всех простых чисел, обладающих указанным свойством и не превышающих одного миллиона.

Задачу решили: 24
всего попыток: 37
Задача опубликована: 08.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Натуральное число N назовем "очень красивым", если оно может быть представлено в виде произведения некоторого натурального числа M и суммы всех цифр числа M. Найдите сумму всех "очень красивых" чисел меньших 10 миллионов.

Задачу решили: 7
всего попыток: 14
Задача опубликована: 15.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111.

Рассмотрим теперь репьюниты вида R(10n). Хотя R(10), R(100) и R(1000) не делятся на 17, R(10000) делится на 17 без остатка. Но оказывается, что нет таких n, для которых R(10n) делилось бы на 19. Из всех простых чисел, меньших ста только четыре, а именно 11, 17, 41 и 73, могут быть делителями R(10n) для некоторого n.

Найдите сумму всех простых чисел, меньших 200000, которые являются делителями R(10n) для какого-либо n.

Задачу решили: 18
всего попыток: 37
Задача опубликована: 18.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Даны первые 1000 простых чисел. Найдите минимальное натуральное число, превосходящее самое большое из них, которое не может быть представлено суммой никаких из этих простых чисел. В сумму каждое число может входить не более одного раза.

Задачу решили: 33
всего попыток: 57
Задача опубликована: 22.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

Шахматный конь ходит буквой "Г" - сначала в одну сторону на 2 клетки, а потом влево или вправо на одну. Новая шахматная фигура баран ходит как и конь, только сначала он ходит на 3 клетки.

Баран начал ходить с поля a1. Какое максимальное количество клеток он может посетить (включая первую) и при этом не наступая ни на одну из клеток дважды.  

Задачу решили: 5
всего попыток: 5
Задача опубликована: 25.02.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Даны натуральные числа a, b, c, d, e, f < 100000, a<b. Найти количество различных таких шестерок, удовлетворяющих условию:

(a*b+c)/d-e=f.

Задачу решили: 11
всего попыток: 20
Задача опубликована: 01.03.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

Если из формулировки этой задачи удалять буквы, то могут оставаться буквы, которые последовательно составляют названия цифр: ноль, один, два, три, четыре, пять, шесть, семь, восемь, девять. За каждый ход можно оставить буквы только для одной цифры. Сколько таких ходов можно сделать?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.