img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 45
Задача опубликована: 04.10.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

9 сентября 2010-го года (по григорианскому календарю) еврейский новый 5771-й год (праздник Рош ха-Шана) совпадает с мусульманским праздником Ид аль-Фитр, отмечаемого после окончания священного месяца рамадан. Оба календаря, еврейский и мусульманский - лунные, а оба праздника приходят на начало лунного месяца (первого еврейского и десятого мусульманского). Однако, мусульманский календарь является чисто лунным, и год всегда содержит 12 месяцев, а еврейский календарь, как и другие древние восточные календари, является лунно-солнечным. К некоторым годам добавляется 13-й месяц, чтобы таким образом быть привязанным и к временам года (так было и в до-исламском арабском календаре). А формула добавления 13-го месяца такая: в каждом цикле из 19-и лет добавляется 13-й месяц к годам с номерами 3,6,8,11,14,17,19 (в китайском календаре 9 вместо 8). Т.к. остаток от деления 5771 на 19 равен 14, то в этом году по еврейскому календарю будет 13 месяцев, а следующий новый год (Рош ха-Шана) будет на целый месяц позже Ид аль-Фитр. Сколько раз в этом тысячелетии (по григорианскому календарю), с 2001-го по 3000-й год, оба праздника совпадут?

Задачу решили: 6
всего попыток: 17
Задача опубликована: 04.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Клетки квадрата 4х4 заполнены цифрами от 0 до 9 таким образом, что суммы цифр в строках, в столбцах и в двух главных диагоналях таблицы равны. Например, в этой таблице


6 3 3 0
5 0 4 3
0 7 1 4
1 2 4 5

такие суммы равны 12.
Сколько есть способов заполнить таблицу 4х4 цифрами от 0 до 9 так, чтобы суммы цифр в строках, в столбцах и в двух главных диагоналях таблицы оказались равны и не превышали 15?

Задачу решили: 7
всего попыток: 32
Задача опубликована: 11.10.10 08:00
Прислал: katalama img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Из описания некоего растения: «… его время жизни составляет 20 лет. В первый год плод растения попадает в землю. Первые побеги растения появляются лишь на второй год. Плодоносить растение начинает с четвертого года и ежегодно дает по 1 плоду, которые сразу попадают в землю, и из них вырастают такие же растения. На двадцатый год своей жизни растение плодоносит в последний раз, а на двадцать первый год – погибает». 

Сколько живых растений будет в 99-м году, если в первый год мы посадим один плод этого растения. Только что посаженные плоды за растения не считаются. Также не считаются живыми растения, для которых данный год является 21-м (или больше) годом жизни.

Задачу решили: 37
всего попыток: 59
Задача опубликована: 18.10.10 08:00
Прислал: admin img
Источник: Интернет-олимпиада школьников по информатике ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для передачи сообщений используется алфавит из 32 прописных русских букв (не используется «Ъ»). Все передаваемые слова содержат ровно по 8 букв. Каждое передаваемое слово начинается с одной из четырех букв (К, Л, М, Н). Остальные буквы в каждом слове могут быть любыми из используемого алфавита. Какое количество информации (в битах) несет произвольная фраза из 10 слов, если для ее кодирования использовалось минимальное количество бит в рамках описанных выше правил.

Задачу решили: 7
всего попыток: 18
Задача опубликована: 18.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n обозначим через g(n) число, полученное перестановкой двух последних цифр в начало, например g(153846)= 461538. Оказывается, что для числа 153846 g(n) кратно n. Действительно, 461538=153846×3. Кроме того, g(n)≠n.

Найдите 5 последних цифр суммы всех натуральных n, не превышающих 10100, для которых g(n) кратно n и g(n)≠n.

Задачу решили: 34
всего попыток: 65
Задача опубликована: 25.10.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kruger

В октябре 2010 года пять пятниц, пять суббот и пять воскресений. А сколько таких месяцев с 2001-го по 2100-й годы? 

Задачу решили: 5
всего попыток: 6
Задача опубликована: 25.10.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим сколькими способами можно представить натуральное число n  в виде суммы степеней 2, используя при этом каждую из степеней не более чем четырежды. Полученное число обозначим через f(n).

Например, f(11)=7, поскольку число 11 можно записать указанным образом ровно семью способами:

11=8+2+1
11=8+1+1+1
11=4+4+2+1
11=4+4+1+1+1
11=4+2+2+2+1
11=4+2+2+1+1+1
11=2+2+2+2+1+1+1

Найдите f(1010).

Задачу решили: 35
всего попыток: 55
Задача опубликована: 01.11.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Если натуральное число и число, записанное в обратном порядке, являются квадратами некоторых натуральных чисел, то такие числа будем называть "квадратами в обе стороны".

Например, число 121 и 400 (лидирующие нули при обратной записи отбрасываются) являются "квадратами в обе стороны". Найдите количество "квадратов в обе стороны" меньших 109

Задачу решили: 13
всего попыток: 17
Задача опубликована: 01.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим прямоугольный параллелепипед со сторонами 84, 21039657. Заметьте, что, записав три измерения этого параллелепипеда в десятичной системе счисления, мы использовали каждую цифру ровно один раз. Будем  называть такой параллелепипед интересным.
Также заметим, что данный параллелепипед обладает еще одним свойством: его объем равен 1705928364, и запись этого числа тоже содержит каждую цифру ровно один раз. Интересный параллелепипед, обладающий этим свойством, будем называть очень интересным.
Найдите наибольший объем очень интересного параллелепипеда.

Задачу решили: 7
всего попыток: 23
Задача опубликована: 08.11.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Обозначим через f(n) сумму кубов десятичных цифр натурального числа n, например:
f(5)=53=125
f(27)= 23+73=351
f(31321)= 33+13+33+23+13=64
Найдите последние девять цифр суммы всех n, не превышающих 1020, для которых f(n) является кубом натурального числа.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.