img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 10
Задача опубликована: 16.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их сумму обозначим как S(n).
Например, при n=91 мы найдем 8 подходящих значений x, а именно: 9, 16, 22, 29, 53, 74, 79, 81. Поэтому S(91)=9+16+22+29+53+74+79+81=363.

Найдите S(123456789987654321).

Задачу решили: 3
всего попыток: 4
Задача опубликована: 23.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их количество обозначим как C(n).
Например, при n=91 мы найдем 8 подходящих значений x, а именно: 9, 16, 22, 29, 53, 74, 79, 81. Поэтому C(91)=8.

Найдите сумму таких n≤1011, для которых C(n)>100.

Задачу решили: 4
всего попыток: 9
Задача опубликована: 30.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим уравнение вида a2 + b2 = N,  где N- некоторое нечетное натуральное число, и будем искать его натуральные решения (a, b), где a четно, и b нечетно.
При N=65 наше уравнение имеет два таких решения:
a=8, b=1 и a=4, b=7.
Обозначим через S(N) сумму значений a для всех решений уравнения a2 + b2 = N. Тогда S(65) = 8 + 4 = 12.

Найдите ∑S(N) для всех бесквадратных натуральных N,  имеющих простые делители только вида 4k+1, где k – натуральное число и 4k+1 < 150.

Примечание: бесквадратным (свободным от квадратов) называется натуральное число, которое не делится ни на один квадрат, кроме 1.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Попробуем построить признак делимости для делителя p > 1, взаимно простого с 10. Мы хотим найти для каждого натурального n другое число n1, которое делится на p тогда и только тогда, когда n делится на p. Два целых числа называются равноделимыми на p, если либо они оба делятся на p, либо оба не делятся. Если b – последняя цифра числа n, и n=10a+b, мы будем искать n1 в виде:
n1 = a + b ? m.
Остается найти подходящее значение  m < p, которое будем  называть фактором делимости. Тогда для достаточно больших n мы сможем построить убывающую последовательность равноделимых чисел.
Например, для p=113 фактор делимости равен 34.
При n=76275 получим n1 = 7627 + 5 * 34 = 7797, и оба числа 76275 и 7797 делятся на 113.
При n=12345 получим n1 = 1234 + 5 * 34 = 1404, и оба числа 12345 и 1404 не делятся на 113.
Сумма факторов делимости для всех простых p вида 4k+3, не превышающих 1000, равна 19961.
Найдите сумму факторов делимости для всех простых p вида 4k+3, не превышающих 2*107.

Задачу решили: 4
всего попыток: 8
Задача опубликована: 21.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим треугольник, длины сторон которого – целые числа a, b и с, удовлетворяющие неравенству a ≤ b ≤ c.
Будем называть такой треугольник примитивным, если наибольший общий делитель длин его сторон равен 1, т.е. gcd(a, gcd(b,c))=1.

Подсчитайте, сколько существует различных примитивных треугольников, периметр которых – семизначное число.

Задачу решили: 9
всего попыток: 12
Задача опубликована: 28.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Определим модифицированную последовательность Коллатца как последовательность натуральных чисел, начинающуюся с числа a1, а далее задаваемую рекуррентно по следующим правилам:

  • an+1 = an/3, когда an делится на 3. Обозначим такой переход от  an к an+1 символом "D".
  • an+1 = (4an + 2)/3, если an дает остаток 1 при делении на 3. Обозначим этот случай символом "U".
  • an+1 = (2an - 1)/3 , если an дает остаток 2 при делении на 3.

Обозначим этот случай символом "d".
Последовательность заканчивается первой встретившейся единицей.
Например, при a1 =231 получим последовательность чисел {231,77,51,17,11,7,10,14,9,3,1} и соответствующую строку символов - "DdDddUUdDD".
Для a1 =1004064 получим строку символов DdDddUUdDDDdUDUUUdDdUUDDDUdDD, которая начинается с DdDddUUdDD.

Найдите все a1<1015, у которых цепочка символов, соответствующая модифицированной последовательности Коллатца, начинается с dDUddDDUUUUUdDDUdUdDUdDUddUDUd.
В качестве ответа укажите их сумму.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 04.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Даны n натуральных чисел  1 < a1  < a2 < ... < an. Будем рассматривать их линейные комбинации вида  q1a1 + q2a2 + ... + qnan = b, используя при этом только целые неотрицательные коэффициенты qk ≥ 0. Заметим, что таким образом можно получить далеко не всякое значение b. Например, при n=2, a1 = 5 и a2  = 7 правая часть b может принимать любые натуральные значения кроме двенадцати: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 и 23. Обозначим количество таких недостижимых чисел через h(a1, a2, ..., an). Таким образом, h(5,7)=12.
Также можно проверить, что h(6, 10, 15)=15, и h(14, 22, 77) = 98.
Найдите сумму всех h(p*q,p*r,q*r), где p, q и r ? простые числа, и p < q < r < 5000.

Задачу решили: 3
всего попыток: 12
Задача опубликована: 11.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим треугольники, длины сторон которых выражаются целыми числами, и, кроме того, градусная мера хотя бы одного из углов — тоже целое число. Ограничимся при этом треугольниками с периметром, не превышающим 108.
Найдите сумму их периметров.

Задачу решили: 0
всего попыток: 3
Задача опубликована: 18.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Трудолюбивый муравей случайно блуждает по клетчатой доске 5х5, расположенной вертикально. Он начинает свое движение в центре доски, а его траектория состоит из вертикальных и горизонтальных отрезков, соединяющих центры соседних клеток. Направление каждого следующего отрезка он выбирает случайным образом и с равной вероятностью из 2, 3 или 4 возможных вариантов, в зависимости от своего положения.

В начальный момент в каждой из пяти клеток нижнего ряда расположено по одному зерну. Если муравей свободен от ноши, и он оказывается в клетке нижнего ряда, содержащей зернышко, то он его забирает. Если муравей с зерном оказывается в свободной клетке верхнего ряда, то он оставляет зерно в этой клетке.

Работа муравья считается завершенной, когда все зерна перенесены из нижнего ряда в верхний (понятно, что в каждой клетке верхнего ряда окажется по одному зерну).

Какова средняя ожидаемая продолжительность работы муравья, если его путь на одну клетку вниз занимает 1 секунду, на одну клетку вверх – 3 секунды, а на одну клетку вправо или влево по горизонтали – 2 секунды?

Ответ дайте в микросекундах, округлив вниз до целого.

Задачу решили: 5
всего попыток: 10
Задача опубликована: 25.06.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Мы хотим приготовить пиццу круглой формы, состоящую из m?n ломтей-секторов одного размера, но с разной начинкой. У нас есть m≥2 сортов начинки, и каждый сорт мы должны использовать ровно для n ломтей.

Обозначим через f(m,n) количество способов приготовления пиццы, в которой будет ровно n ломтей, заправленных начинкой каждого из m сортов. Поскольку пиццу можно крутить как угодно вокруг вертикальной оси, но нельзя переворачивать начинкой вниз, зеркально симметричные варианты считаются различными, а варианты, отличающиеся только поворотом, предполагаются одинаковыми.

Например, f(2,1)=1,  f(2,2)=f(3,1)=2 и  f(3,2)=16.

Случай f(3,2) показан на рисунке:

 p_281_pizza.gif

Найдите сумму всех f(k,k), не превышающих 1015.

 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.