Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
6
всего попыток:
14
Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени: (√2+√3)2 = 9.898979485566356... (√2+√3)4 = 97.98979485566356... (√2+√3)6 = 969.998969071069263... (√2+√3)8 = 9601.99989585502907... (√2+√3)10 = 95049.999989479221... (√2+√3)12 = 940897.9999989371855... (√2+√3)14 = 9313929.99999989263... (√2+√3)16 = 92198401.99999998915... Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1. В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n. Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013. Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.
Задачу решили:
3
всего попыток:
4
Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:
Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}. Пусть t(n) — количество таких последовательностей длины n. Тогда t(10) = 86195 и t(20) = 5227991891. Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.
Задачу решили:
7
всего попыток:
7
Горизонтальная полоска состоит из 2n + 1 клеток. Средняя клетка оставлена пустой, слева от нее в n клетках стоят красные фишки, а справа – синие. На рисунке показано расположение фишек для случая n = 3.
Фишки могут совершать ходы двух видов: шаги, когда фишка перемещается на соседнюю незанятую клетку, и скачки, когда одна фишка перепрыгивает через другую в следующую непосредственно за нею пустую клетку.
Обозначим через M(n) минимальное количество ходов, необходимое для того, чтобы поменять местами синие и красные фишки, так, чтобы красные фишки оказались справа от центра, а синие – слева. Легко проверить, что M(3) = 15, а 15 является треугольным числом. Построим последовательность таких n, для которых M(n) является треугольным числом. В этой последовательности ровно пять чисел, не превышающих 100, а именно 1, 3, 10, 22 и 63. Их сумма равна 99. Найдите сумму всех n, не превышающих 1017, для которых M(n) является треугольным числом.
Задачу решили:
0
всего попыток:
0
Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n. Например, U( 1234567890, 107-10) = 24. Найдите U(1234567890987654321, 1012-10).
Задачу решили:
2
всего попыток:
2
Несколько комнат последовательно соединены автоматическими дверями, как показано на рисунке.
Двери открывают с помощью карт доступа. При этом каждую карту можно использовать лишь однажды: когда вы проходите в комнату, двери за вами автоматически закрываются, а карта не возвращается. Аппарат в начале маршрута может выдать вам в любое время любое количество карт без ограничений, однако система слежения не позволяет иметь на руках более трех карт одновременно. При нарушении этого правила срабатывает сигнал тревоги, а все двери запираются навсегда. Поэтому если вы возьмете при входе три карты и пойдете прямо к выходу, то в комнате №3 у вас карт не останется, и вы окажетесь в ней заперты с обеих сторон. К счастью, в каждой комнате есть сейф, куда можно складывать карты в любом количестве. Пользуясь этими сейфами, вы сможете достичь выхода. Например, вы можете войти в комнату № 1, использовав одну карту, положить вторую карту в сейф, а с помощью третьей карты вернуться к началу маршрута. Получив там в аппарате еще три карты, вы используете одну, чтобы войти в комнату №1 и взять там из сейфа оставленную карту. Теперь у вас в руках снова будет три карты, и этого достаточно, чтобы открыть три оставшиеся до выхода двери. Итак, вы можете пройти анфиладу из трех комнат, использовав всего 6 карт. 6 комнат можно пройти, используя 123 карты и не имея на руках более 3 карт одновременно. Пусть C - максимальное количество карт, которые можно иметь при себе. Пусть R - количество комнат, через которые нужно пройти от входа (“Start”) до выхода (“Finish”). Обозначим через M(C,R) минимальное количество карт, необходимых для прохода через R комнат, имея при себе не более C карт в каждый момент времени. Например, M(3,6)=123 и M(3,7)=366. Поэтому ΣM(3,R)=489 при 6≤R≤7. Можно подсчитать, что ΣM(5,R)=2841 при 1≤R≤15. Найдите ΣM(5,R) при 1≤R≤60.
Задачу решили:
9
всего попыток:
14
Вагоны поезда обозначены буквами латинского алфавита: A,B,C,D..., и последовательность вагонов в железнодорожном составе можно задать с помощью соответствующей цепочки букв. В правильно сформированном составе вагоны должны следовать алфавитном порядке. Добиваются этого на сортировочной станции, где установлен большой поворотный круг. Когда состав въезжает на круг, несколько последних вагонов отцепляют, после чего локомотив с остальными вагонами съезжает с круга. Вагоны, стоящие на круге, поворачивают на 180 градусов и вновь прицепляют в хвост состава, но уже в обратном порядке. Эту операцию повторяют несколько раз, пока не достигают желаемого результата. В некоторых случаях сформировать состав совсем просто. Например, когда исходный порядок вагонов ADCB, вагоны можно расцепить между A и D, затем развернуть фрагмент DCB, и, наконец, сцепить вагоны в нужном порядке. Результат достигается всего за один шаг, т.е. за один поворот круга на 180 градусов. Возможно, процесс можно оптимизировать, но машинист пользуется совсем простым алгоритмом. Сначала он стремиться прицепить вагон A следом за паровозом, затем следом за ним вагон B, и так далее. Машинист выяснил, что для состава из четырех вагонов потребуется не более 5 шагов. Максимальное количество - 5 операций - требуется для двух начальных последовательностей, а именно DACB и DBAC. Последовательности вагонов, требующие наибольшего количества операций для упорядочения, будем называть пессимальными. Порядок формирования состава для начальной последовательности DACB показан на рисунке.
Для состава из шести вагонов машинист составил список пессимальных последовательностей. Список содержал 24 последовательности. Последовательности он расположил в алфавитном порядке, и цепочка DFAECB оказалась на десятом месте от начала. Представьте, что вам поручили составить список пессимальных последовательностей для составов из 11 вагонов и упорядочить получившийся список в алфавитном порядке. На каком месте в списке окажется последовательность CIAKBGHFJDE?
Задачу решили:
3
всего попыток:
5
Последовательность Голомба {G(n)} определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n) вхождений каждого натурального числа n.
Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30. Найдите ΣG(2n)для 1 ≤ n < 60.
Задачу решили:
5
всего попыток:
6
Возьмем натуральное число k, и будем выписывать последовательность рациональных чисел ai = xi/yi следующим образом: 1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6 Поэтому f(20) = 6. Можно проверить, что f(2) = 2, f(3) = 1 и Σf(k3) = 18764 для простых k, не превышающих 100. Найдите Σf(k3) для простых k, не превышающих 5×106.
Задачу решили:
10
всего попыток:
22
Возьмем матрицу n×n, выберем из нее n элементов так, чтобы никакие два из них не стояли в одной строке или столбце, и найдем их сумму. Минимальное значение такой суммы будем называть матричной суммой для данной матрицы. 7 53 183 439 863 матричной суммой будет число 1075=7+79+343+343+303. Найдите матричную сумму для матрицы: 7 53 183 439 863 497 383 563 79 973 287 63 343 169 583
Задачу решили:
8
всего попыток:
16
Запишем число 57 в системах счисления по основанию 4 и 28: 5710=3214=2128 В обоих случаях
При выполнении этих условий будем говорить, что число имеет специальный вид в данной системе счисления. Так, число 57 имеет специальный вид в системах счисления с основаниями 4 и 28. Существует пять натуральных чисел 1<n<500, имеющих специальный вид хотя бы в двух системах счисления, а именно 57, 121, 209, 321 и 457. Их сумма равна 1165. Найдите сумму n (1<n<1012), имеющих специальный вид хотя бы в двух системах счисления.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|