img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 64
всего попыток: 100
Задача опубликована: 08.05.09 17:03
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Функция f(n) определена для всех натуральных n и принимает целые неотрицательные значения. Известно, что f(n) удовлетворяет условиям:

а) при любых m и n f(m + n) – f(m) – f(n) принимает значения 0 или 1,

б) f(2) = 0,

в) f(3) > 0,

г) f(9999) = 3333.

Найти f(2009).

Задачу решили: 81
всего попыток: 115
Задача опубликована: 08.05.09 17:03
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для некоторых натуральных чисел m и n (m < n) последние три цифры десятичной записи чисел 2009n и 2009m совпадают. Чему равна минимальная сумма m+n?

Задачу решили: 42
всего попыток: 77
Задача опубликована: 08.05.09 17:03
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Пусть a и b – натуральные числа, a < b. При делении a² + b² на a + b получается частное q и остаток r. Найти количество всех разных чисел b из пар (a,b), для которых q² + r = 2009.

Задачу решили: 31
всего попыток: 34
Задача опубликована: 09.05.09 16:18
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

Известно, что оригинал зашифрованного текста написан на русском языке в кодировке - Windows-1251, также известен, алгоритм шифрования:

Задумано кодовое слово из трёх строчных кириллических символов, и затем к его концу просто дописывалось оно же необходимое число раз (например, абвабв...абв).

Затем с каждым символом некоторого текста и соответствующим по номеру символом кодового слова проводилась операция XOR. Она обладает тем свойством, что если дважды совершить операцию XOR с одним и тем же символом, то результат будет равным оригиналу.

Расшифруйте отрывок, не имея кодового слова. В ответ запишите сумму всех чисел соответствующих номерам символов расшифрованного текста в кодовой странице Windows-1251.

Вот зашифрованный отрывок:

47,11,8,25,11,18,11,197,7,12,1,10,0,13,194,1,197,47,11,23,2,19,0,194,3,197,12,
25,1,7,0,25,15,5,197,10,203,15,12,6,20,10,0,13,17,7,5,14,3,201,194,8,11,0,5,21,
10,0,13,194,7,8,12,8,11,194,4,11,207,31,21,2,6,19,17,12,20,8,3,201,194,4,11,
207,6,0,14,14,19,8,3,197,10,203,10,12,198,14,2,25,30,15,3,201,194,5,20,17,13,1,
2,0,13,194,5,1,10,6,197,6,27,22,1,5,6,12,199,197,13,27,11,13,3,20,25,9,5,9,3,
197,19,11,9,25,14,197,18,11,2,15,5,11,3,27,5,5,6,30,7,203,14,7,1,5,18,26,23,0,
11,197,12,25,197,0,26,0,23,203,13,14,203,13,5,9,0,19,25,8,25,30,197,3,5,14,7,12,
8,7,2,222,194,6,11,194,6,13,194,5,1,15,5,9,17,203,13,5,203,8,10,30,197,15,14,
197,13,27,13,23,5,1,10,0,5,194,9,197,1,5,14,12,9,22,194,25,5,194,4,21,12,26,23,
2,20,197,14,16,20,9,23,201,194,28,23,12,203,13,14,203,8,7,203,9,12,13,0,16,203,
4,25,25,25,194,3,2,0,14,20,16,6,5,194,25,5,194,10,11,9,14,2,15,23,201,194,1,11,
16,5,21,12,2,197,19,25,21,2,15,5,9,11,197,47,11,23,2,19,5,206,203,15,2,1,197,15,
14,197,14,5,3,7,25,197,3,16,23,30,203,13,5,9,0,19,25,8,2,203,8,10,203,11,6,6,5,
194,10,11,9,14,2,15,23,201,194,1,11,16,5,21,12,2,197,12,15,0,18,13,13,14,203,3,
10,9,11,11,203,18,7,0,11,0,14,15,216,203,13,3,5,197,8,11,3,6,16,12,194,13,13,0,
5,12,194,28,0,9,5,7,7,1,197,10,7,0,7,25,197,19,9,11,10,203,11,19,5,4,7,6,8,12,
26,23,10,203,13,194,9,20,7,8,1,2,203,13,14,14,0,16,203,11,19,5,4,7,6,8,17,21,
197,10,203,20,0,5,27,194,6,11,0,24,27,206,203,20,9,5,3,15,24,27,206,203,8,7,3,2,
0,14,20,16,6,22,28,203,9,7,15,13,20,3,8,7,203,4,12,0,0,5,6,25,206,203,8,7,203,4,
12,0,0,5,6,25,194,0,0,1,1,13,23,199,197,13,14,18,7,6,13,206,203,15,12,13,13,206,
203,20,7,27,1,20,11,201,194,6,0,18,9,11,0,203,13,194,25,203,6,197,201,194,12,5,
13,3,20,2,6,8,25,30,197,0,203,9,7,15,13,20,3,8,7,199,197,15,5,197,3,5,14,7,12,8,
30,199,197,19,5,20,16,5,26,27,24,27,194,3,2,194,5,1,15,5,6,12,203,13,5,203,4,7,
26,18,10,26,14,7,6,8,25,30,197,19,5,0,6,3,8,7,6,13,11,203,7,194,26,23,18,11,1,2,
6,13,29,30,197,31,25,13,23,203,11,18,8,5,15,5,7,204,203,56,16,11,197,13,27,11,
19,25,5,29,203,9,25,26,14,30,203,8,7,203,9,12,8,14,2,203,10,18,3,16,12,15,13,16,
23,197,6,5,15,16,5,21,2,7,197,202,25,5,8,203,3,7,199,197,8,11,15,194,6,0,194,7,
11,4,14,23,194,4,21,10,2,23,10,203,15,12,0,1,17,6,22,194,7,30,19,0,25,206,203,
18,16,5,197,12,6,197,15,14,197,14,5,3,7,25,197,8,5,14,6,5,7,2,25,25,203,203,10,
12,25,11,14,24,201,194,28,23,12,203,13,23,203,1,7,0,11,194,13,13,5,6,13,194,26,
11,19,25,11,29,0,11,194,9,197,16,5,9,206,203,18,16,5,4,25,203,14,7,28,13,16,23,
201,194,4,11,16,5,9,17,199,197,21,25,11,194,12,5,194,25,11,194,5,8,10,203,10,12,
0,22,21,11,14,10,203,1,7,6,25,1,3,201,194,3,197,13,5,23,12,7,22,206,203,18,16,5,
197,15,11,197,31,25,11,194,15,0,9,5,197,12,6,13,194,4,11,16,27,5,16,3,14,10,203,
14,17,28,29,10,14,197,1,5,1,25,203,20,0,5,0,11,203,3,10,12,8,10,197,197,47,5,
197,1,0,5,0,6,11,7,203,114,194,7,30,19,0,25,194,22,23,2,203,8,7,203,9,12,8,14,2,
203,10,18,3,12,16,3,197,6,5,15,16,5,21,2,7,197,13,5,23,12,7,22,206,203,18,16,5,
197,12,6,13,194,9,13,6,14,14,10,199,197,21,25,11,194,5,8,10,203,8,7,26,11,14,6,
0,15,6,11,194,4,11,9,14,2,15,16,201,194,3,197,3,16,14,10,203,1,7,2,20,16,9,13,
16,14,14,30,6,11,194,4,11,9,14,2,15,16,197,6,0,26,194,9,20,7,30,197,6,5,9,2,19,
8,10,30,197,50,5,20,16,5,7,25,30,203,194,37,8,10,203,4,25,0,13,194,4,11,9,14,2,
15,16,197,15,14,197,13,5,23,12,7,22,206,203,18,16,5,197,5,11,20,16,11,7,9,20,14,
10,203,10,18,5,6,9,11,23,25,9,5,16,23,197,3,5,14,30,6,22,28,203,4,12,0,25,26,14,
12,194,28,5,19,25,25,28,203,7,18,14,1,15,16,0,194,9,0,27,14,20,16,9,5,194,195,7,
18,14,1,194,22,23,12,25,197,3,16,14,194,7,5,9,5,197,21,24,7,19,25,7,10,25,0,9,
14,8,206,203,10,12,25,11,14,24,197,21,25,11,194,9,21,7,15,8,25,14,197,0,14,28,7,
26,23,0,11,197,6,11,7,2,0,13,19,23,197,0,203,9,2,0,11,14,203,15,12,0,13,21,14,
20,16,9,0,203,199,197,15,5,197,12,6,13,194,4,11,9,14,2,15,16,201,194,6,0,12,10,
16,12,15,13,14,16,201,194,6,0,10,12,4,7,13,8,25,203,4,25,0,13,194,195,10,18,3,
18,10,6,5,194,124,197,13,5,18,7,7,22,194,9,20,7,8,1,2,203,0,19,25,25,194,3,197,
3,24,1,17,25,197,14,6,13,14,16,0,194,3,2,9,14,18,10,25,0,9,3,201,194,9,11,18,5,
3,7,3,201,194,8,11,14,14,11,13,11,23,25,203,13,194,11,14,9,5,10,2,25,30,203,203,
10,12,25,11,14,24,201,194,28,23,12,203,11,15,3,197,17,15,11,0,0,0,16,9,11,18,20,
14,10,203,8,18,11,7,19,25,7,7,6,8,12,2,197,13,5,23,18,14,4,15,5,20,16,3,197,3,5,
14,30,6,11,11,203,13,194,0,27,6,14,12,206,203,14,28,10,26,27,3,16,194,10,11,9,
23,8,17,21,203,194,37,8,10,203,22,6,5,7,9,14,23,0,5,21,29,0,13,194,25,11,11,203,
7,7,28,8,12,2,197,21,14,14,12,9,0,21,14,20,8,5,12,194,4,11,16,27,0,3,6,11,19,25,
13,194,6,5,6,14,3,6,16,197,15,11,197,12,10,14,7,8,18,7,6,13,7,199,197,13,5,23,
18,14,4,15,5,20,16,3,197,19,5,18,17,9,20,16,9,13,29,203,13,194,15,0,29,25,0,9,
23,8,12,26,23,10,199,197,8,5,23,12,27,30,7,203,13,19,4,30,16,16,7,2,14,23,194,
28,0,9,5,7,7,1,197,0,5,197,0,27,0,14,20,197,19,25,21,2,15,5,15,3,26,204,203,43,
15,3,197,17,15,11,0,0,0,16,9,11,18,20,14,10,203,23,12,2,197,0,14,18,15,5,12,206,
203,18,7,0,11,0,14,18,7,26,15,12,2,197,117,203,2,2,7,0,16,6,11,11,203,7,194,27,
0,3,14,8,8,14,197,0,203,20,2,7,11,11,203,10,7,27,7,12,10,30,16,6,11,11,203,17,
12,27,9,7,203,114,194,4,11,16,27,0,3,6,11,19,25,13,194,4,11,16,14,21,7,25,25,
194,25,11,194,7,0,19,25,11,206,203,15,12,25,11,18,5,0,194,24,29,10,10,14,7,6,11,
204,203,53,7,10,0,15,5,15,194,24,4,30,14,23,19,20,197,10,203,23,12,25,18,2,26,
197,4,14,197,3,14,3,10,25,197,0,203,21,17,1,13,194,7,5,16,14,21,10,199,197,15,
20,8,30,1,13,194,15,14,29,203,23,12,8,11,206,203,18,16,5,4,25,203,0,14,24,197,
13,5,19,7,0,11,0,11,14,10,203,13,194,4,11,16,14,21,9,3,197,3,5,14,30,6,11,7,203,
9,7,26,23,12,199,197,10,203,0,14,24,197,6,14,14,2,14,23,19,20,197,9,14,6,21,14,
201,194,1,11,1,15,5,194,10,11,9,23,8,12,14,197,14,14,20,16,5,197,13,5,23,18,24,
23,194,3,14,10,203,10,12,29,0,9,24,27,16,197,197,50,14,4,7,6,11,8,203,8,7,203,7,
7,27,13,16,199,197,21,25,11,3,16,197,17,203,20,10,0,25,15,14,12,26,3,16,194,3,
197,14,24,1,18,14,12,26,3,16,194,14,6,12,203,8,7,203,4,25,0,11,194,26,21,7,15,
20,16,9,197,13,5,9,12,28,25,194,14,6,12,203,4,12,0,13,204,203,45,194,6,5,6,14,3,
6,11,197,15,11,197,12,10,14,7,8,18,7,6,13,7,203,13,194,9,30,18,11,3,7,6,13,7,
203,20,12,28,22,0,26,23,0,3,26,194,9,197,16,5,197,0,27,0,14,20,201,194,1,5,8,
203,9,2,25,25,194,25,21,7,25,197,7,8,11,194,19,13,26,1,22,206,203,22,16,14,29,2,
21,23,194,14,6,12,197,197,202,41,11,11,6,5,194,3,197,14,3,21,203

Задачу решили: 31
всего попыток: 45
Задача опубликована: 09.05.09 16:18
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Некоторые пары простых чисел обладают таким свойством: если записать их подряд в произвольном порядке, то получится тоже простое число. Например, этим свойством обладают числа 3 и 7, поскольку 37 и 73 тоже простые.

Найдите среди простых чисел меньших 10000 все возрастающие четверки простых чисел такие, что любая пара из четверки обладает описанным свойством. Например, такой четвёркой является 3, 7, 109, 673. В разных четверках числа могут повторяться.

Вычислите сумму всех чисел во всех четверках.

Задачу решили: 47
всего попыток: 132
Задача опубликована: 11.05.09 10:19
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Десятичная запись числа 987654321! заканчивается на 246913573 нулей. Чему равны последние шесть ненулевых цифр?

Задачу решили: 86
всего попыток: 136
Задача опубликована: 11.05.09 12:16
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: chingiz

Числа Фибоначчи задаются следующей рекуррентной формулой: fn+2=fn+1+fn. При этом f0=0, f1=1.

Сколько всего чисел Фибоначчи f таких, что 1010 < f < 10100.

Задачу решили: 35
всего попыток: 61
Задача опубликована: 11.05.09 13:45
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Любое натуральное число N можно представить в виде произведения степеней простых чисел:

N=p1k1*p2k2*...*pmkm

Найти максимум

p1k1+p2k2+...+pmkm

для всех N < 1010.

Задачу решили: 97
всего попыток: 167
Задача опубликована: 11.05.09 13:58
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pakko

Разместите простые числа в ряд по возрастанию: 2, 3, 5, 7, 11, 13,... Суперпростые числа - это числа в ряду простых чисел, порядковый номер которых также является простым числом.

Сколько всего суперпростых чисел меньших 107?

Задачу решили: 25
всего попыток: 50
Задача опубликована: 11.05.09 14:39
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти максимальное число, меньшее 107, которое имеет наибольшее количество представлений в виде суммы различных простых чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.