img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 22
всего попыток: 37
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Вершинам правильного пятиугольника приписаны целые числа a, b, c, d, e, при этом a + b + c + d + e > 0. За один ход можно сделать следующую операцию: выбрать вершину, которой приписано отрицательное число, поменять у него знак и прибавить его к соседям. Иными словами, если числа x, y, z приписаны трем последовательным вершинам и y < 0, то их можно заменить на x + y, -y, z + y. Можно доказать, что при любом наборе начальных чисел рано или поздно получится набор, состоящий только из неотрицательных чисел. Например, пусть изначальные числа -1, 2, 3, 4, -5. Их сумма больше нуля. Можно сделать максимум 10 операций, прежде чем все числа станут неотрицательными. Требуется найти такой набор начальных чисел, по модулю не превосходящих 10, для которого существует последовательность операций максимальной длины. В качестве ответа выведите максимальное число операций.

Задачу решили: 12
всего попыток: 46
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Известно, что все числа, начиная с некоторого, можно представить в виде 2229013x + 3875743y + 2390041z, где x, y и z - целые неотрицательные числа. Чему равно наибольшее натуральное число, которое нельзя представить в таком виде?

Задачу решили: 46
всего попыток: 55
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим десятичную запись числа √2=1.41421356237... Число 421 является первым трехзначным простым числом, встречающимся в этой записи. Число 135623 - первым шестизначным простым числом. Чему равно первое 12-значное простое число, встречающееся в десятичной записи числа √2?

Задачу решили: 30
всего попыток: 70
Задача опубликована: 15.05.09 16:13
Прислал: falagar img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим сумму Sn=1·31+2·32+3·33+4·34+5·35+...+n·3n. Требуется найти последние девять цифр числа S12345678987654321.

Задачу решили: 49
всего попыток: 159
Задача опубликована: 15.05.09 23:41
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Назовем простое число единичным если его двоичная запись содержит только единицы. Если выписать все единичные простые числа, получим ряд: 3, 7, 31, 127, ... Найдите 14-й член данного ряда.

Задачу решили: 19
всего попыток: 27
Задача опубликована: 17.05.09 10:16
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Лучшее решение: Michalych (Дмитрий Феломешкин)

Известно, что любое число вида √n, где n - не является полным квадратом, представимо в виде периодической цепной дроби. Например,

Нас будет интересовать количество различных значений в периоде таких цепных дробей. В приведенном примере:

√2=[1;(2)], длина периода: 1, различных значений в периоде: 1;

Приведем еще примеры:

√3=[1;(1,2)], длина периода: 2, различных значений в периоде: 2;
√5=[2;(4)], длина периода: 1, различных значений в периоде: 1;
√6=[2;(2,4)], длина периода: 2, различных значений в периоде: 2;
√7=[2;(1,1,1,4)], длина периода: 4, различных значений в периоде: 2;
√8=[2;(1,4)], длина периода: 2, различных значений в периоде: 2;
√10=[3;(6)], длина периода: 1, различных значений в периоде: 1;
√11=[3;(3,6)], длина периода: 2, различных значений в периоде: 2;
√12= [3;(2,6)], длина периода: 2, различных значений в периоде: 2;
√13=[3;(1,1,1,1,6)], длина периода: 5, различных значений в периоде: 2.

Для всех натуральных n, не больших 2009, не являющихся полными квадратами, найдите количество различных значений в периоде цепной дроби √n. В ответе укажите сумму всех количеств.

Задачу решили: 20
всего попыток: 28
Задача опубликована: 18.05.09 13:54
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Michalych (Дмитрий Феломешкин)

Известно, что tg(1) представляется следующей непериодической цепной дробью:

tg(1) = [ 1, 1, 1, 3, 1, 5, ... , 1, 2*k - 1, ... ]

Если рассмотреть цепную дробь только с несколькими первыми, значениями получим приближение tg(1).

Для первого значения приближение tg(1) ~ 1.

Для первых двух: tg(1) ~ 1 + 1/1 = 2.

Трёх: 1 + 1 / ( 1 + 1 / 1 ) = 3/2.

Четырех: 1 + 1 / ( 1 + 1 / ( 1 + 1 / 3 )) = 11/7.

Найдите 2009-ое и 2010-ое приближения цепными дробями tg(1). Вычислите разность этих приближений и запишите в ответ сумму цифр знаменателя этой разности.

Задачу решили: 26
всего попыток: 36
Задача опубликована: 21.05.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Если мы возьмем все правильные несократимые дроби с d ≤ 8 и выпишем их в порядке возрастания, то получим следующую последовательность:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
Сумма знаменателей этих дробей:
8+7+6+5+4+7+3+8+5+7+2+7+5+8+3+7+4+5+6+7+8
равна 122.
Если выписать таким же образом правильные несократимые дроби с d ≤ 1 000 000, то какой будет сумма их знаменателей?

Задачу решили: 23
всего попыток: 33
Задача опубликована: 21.05.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим дробь n/d, где n и d - натуральные числа. Если числа n и d - взаимно простые, и n<d, такую дробь называют правильной несократимой.
Если мы возьмем все правильные несократимые дроби с d ≤ 8 и выпишем их в порядке возрастания, то получим следующую последовательность:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
Между 1/3 и 1/2 расположены 3 дроби: 3/8, 2/5, 3/7, а сумма их числителей равна 8.
Если выписать таким же образом все правильные несократимые дроби с 10 000, то какова будет сумма числителей дробей, лежащих между 1/3 и 1/2?

Задачу решили: 14
всего попыток: 45
Задача опубликована: 24.05.09 11:21
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 200
Темы: алгоритмыimg

В игре "Пятнашки" необходимо в квадратной коробке размера 4х4 переставить пятнадцать произвольно расположенных плашек по порядку, при этом единственным разрешенным действием является перемещение одной из плашек в соседнюю незанятую в коробке позицию (http://ru.wikipedia.org/wiki/Пятнашки). Определите, за какое минимальное количество ходов можно решить данную головоломку при следующем начальном расположении плашек в коробке (незанятая позиция обозначена числом 0):

5 13 2 9 

11 15 7 10 

0 8 12 14 

3 6 4 1

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.