Лента событий:
Vkorsukov
решил задачу
"Целочисленные точки на эллипсах - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
5
Как известно, японцы застилают полы прямоугольными матами-татами, укладывая их без зазоров и перекрытий согласно строгим традиционным правилам. Хотя в разных частях Японии размер татами различается, везде его стороны соотносятся как 2:1. Поэтому стороны японской комнаты соотносятся как целые числа a и b, а ее площадь можно выразить как s = a × b.
Задачу решили:
2
всего попыток:
8
Высота над уровнем моря на острове Буян определяется формулой , Примечание. Для вашего удобства формула высоты записана в более удобном для программирования виде: h=( 5000-0.005*(x*x+y*y+x*y)+12.5*(x+y) ) * exp( -abs(0.000001*(x*x+y*y)-0.0015*(x+y)+0.7) )
Задачу решили:
3
всего попыток:
4
Корнем многочлена P(x) называют решение уравнения P(x) = 0.
Задачу решили:
3
всего попыток:
6
Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами: Найдите остаток от деления F(25,35) на 108.
Задачу решили:
5
всего попыток:
7
Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:
Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй. Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда Z(6)=18, Z(10)=964, Z(15)= 360505. Найдите ∑Z(n) для 1 ≤ n ≤ 18.
Задачу решили:
4
всего попыток:
10
Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
Задачу решили:
3
всего попыток:
12
Рассмотрим метод кодирования черно-белых изображений при помощи квадрадеревьев для квадратного изображения размером 2N×2N однобитовых пикселей. Сгенерируем кодирующую последовательность из нулей и единиц по следующим правилам:
В качестве примера рассмотрим изображение размером 4×4, где цветными крестиками обозначены точки ветвления.
В принципе, изображение может быть закодировано несколькими различными битовыми последовательностями, например, "001010101001011111011010101010" или "0100101111101110". Первая из этих последовательностей содержит 30 битов, а вторая – только 16, и эта длина является минимальной. Рассмотрим теперь изображения размером 2N×2N, построенные следующим образом:
Для изображения данного типа с N=24 найдите кодирующую последовательность минимальной длины. Сколько единиц она содержит?
Задачу решили:
5
всего попыток:
6
Рассмотрим многочлен N(p,q) = ΣTn*pn, где p, q - натуральные числа, сумма берется для 0≤n≤q, а коэффициенты Tn получены с помощью генератора случайных чисел:
Задачу решили:
10
всего попыток:
11
Назовем простое число p числом Панаитопола (Panaitopol), если его можно представить в виде p = (x4-y4)/(x3+ y3), где x и y — натуральные числа. Найдите последние 8 цифр суммы чисел Панаитопола, не превышающих 5×1015.
Задачу решили:
4
всего попыток:
4
Как известно, каждый член последовательности Фибоначчи является суммой предыдущих двух. Начав с чисел 1 и 2, получим последовательность 1, 2, 3, 5, 8, 13, 21, 34, 55, 89… Каждое натуральное число может быть единственным образом записано в виде суммы некоторого набора различных чисел Фибоначчи, не содержащего пары соседних чисел Фибоначчи. Например, 100 = 3 + 8 + 89. Такую сумму называют представлением Цекендорфа. Обозначим через z(n) число слагаемых в представлении Цекендорфа для натурального числа n. Тогда z(5)=1, z(14)=2, z(100)=3. ∑z(n) для всех шестизначных n равна 7236250. Найдите ∑z(n) для всех 17-значных n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|