img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 2
всего попыток: 5
Задача опубликована: 22.10.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

Лёва и Петя поспорили, у кого лучше память, и решили проверить. Для этого они обзавелись генератором случайных чисел, настроили его на получение случайных чисел от 1 до 10 и стали соревноваться, кто больше чисел запомнит. По условию игры участник получает очко, если очередное число все еще хранится в его памяти. Побеждает тот, кто набрал больше очков.

По ходу дела выяснилось, что и Лёва, и Петя могут удержать в голове не более пяти разных чисел. Если игрок уже помнит пять чисел, то чтобы запомнить следующее, не содержащееся к этому моменту в его памяти, он вынужден забыть одно из имеющихся. Однако оказалось, что забывание происходит несколько по-разному:

  • Лёва забывает то число, которое не выдавалось генератором наиболее продолжительное время
  • Петя забывает то число, которое первым попало в память.

В начале соревнования память игроков свободна.

Вот пример начала игры:

Тур

Очередное число

Память Лёвы

Очки Лёвы

Память Пети

Очки Пети

1

1

1

0

1

0

2

2

1,2

0

1,2

0

3

4

1,2,4

0

1,2,4

0

4

6

1,2,4,6

0

1,2,4,6

0

5

1

1,2,4,6

1

1,2,4,6

1

6

8

1,2,4,6,8

1

1,2,4,6,8

1

7

10

1,4,6,8,10

1

2,4,6,8,10

1

8

2

1,2,6,8,10

1

2,4,6,8,10

2

9

4

1,2,4,8,10

1

2,4,6,8,10

3

10

1

1,2,4,8,10

2

1,4,6,8,10

3

Обозначим количество очков, которые Лёва и Петя набрали после 50 туров через L и P, соответственно. Найдите математическое ожидание величины (L-P)2, результат умножьте на 108 и округлите до ближайшего целого.

Задачу решили: 6
всего попыток: 7
Задача опубликована: 05.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

В сильно  упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH.

В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n.

Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. 

Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки.

На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)

eu300.gif        

В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе.

Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки.

77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H.

Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?

Задачу решили: 9
всего попыток: 17
Задача опубликована: 12.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: игрыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Ним – это игра, в которой двое участников по очереди берут камни, разложенные на несколько кучек. Каждым ходом игрок должен взять из одной кучки один или несколько камней, но хотя бы один – обязательно!

Проигрывает тот, кому камней не досталось, и кто поэтому не может сделать ход.

Мы рассмотрим наиболее популярную версию игры с тремя кучками камней.

Пусть начальная позиция описывается тройкой чисел (n1,n2,n3), где  n1,n2 и n3 - количество камней в каждой из трех кучек.

  • Позиция называется выигрышной, если первый игрок, правильно выбрав стратегию, может гарантировать свою победу.
  • Позиция называется проигрышной, если первый игрок при правильной игре второго всегда проигрывает.

Например, позиция (0,n,n) – проигрышная для любых n, ибо второй игрок всегда может выравнивать количество камней в двух оставшихся кучках, пока в них что-то остается. По этой же причине позиция (1,2,3) – тоже проигрышная, ибо второй игрок своим ходом всегда может создать позицию вида (0,n,n), например:

Первый игрок: (1,2,1)         Второй игрок: (1,0,1)

Первый игрок: (0,0,1)         Второй игрок: (0,0,0) – победа.

Подсчитайте, сколько существует проигрышных позиций вида (n,2n,3n), где n – натуральное число, не превышающее 1012.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 17.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.

  • При n=1 первый игрок автоматически проигрывает, поскольку не может сделать ни одного хода.
  • При n=2 есть только один ход, который автоматически ведет к победе.
  • При n=3 первый игрок может выбрать один из двух различных ходов, и оба они ведут к немедленной победе.
  • При n=4 есть три варианта хода. Среди них есть один выигрышный ход, когда игрок закрашивает две средние клетки.
  • При n=5 есть четыре варианта хода (они показаны на рисунке красным цветом), но все они ведут к поражению: второй игрок (показан синим цветом) всегда может выиграть.

eu306.png

Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43.

Найдите миллионное значение n, при котором второй игрок всегда может победить.

 

Задачу решили: 4
всего попыток: 11
Задача опубликована: 24.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

При изготовлении микросхемы, состоящей из n транзисторов, образовалось k микродефектов. Дефекты распределены случайным образом, каждый дефект оказался в одном из транзисторов, и в любом транзисторе могло оказаться любое количество дефектов. Если в каком-либо транзисторе оказалось три или более дефектов, такой транзистор не работает, и вся микросхема идет в брак.

Обозначим через E(n,k) математическое ожидание количества транзисторов, содержащих дефекты, в годной микросхеме. Например, E(13,3)≈2.78571...

Найдите E(1000000,20000), умножьте на 100000, а результат округлите до целого.

Задачу решили: 2
всего попыток: 3
Задача опубликована: 31.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

 

Английский математик Джон Хортон Конвей изобрел множество математических развлечений, доставляющих не только удовольствие, но и пищу для серьезных размышлений. Одно из его изобретений – язык программирования FRACTRAN, о котором пойдет речь в данной задаче.

Память данных виртуальной машины языка FRACTRAN содержит одно единственное целое число, а программа представляет собой упорядоченную последовательность рациональных дробей. На каждом шаге выполнения программы машина просматривает эти дроби одну за другой слева направо и умножает каждую из них на число из памяти, пока произведение не окажется целым. Полученное целое число записывают в память вместо предыдущего. 

Вот, например, FRACTRAN-программа, предложенная Конвеем для получения последовательности простых чисел:

17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1.

Записав в память исходное значение 2, получим в памяти ряд чисел в следующей последовательности:

15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132, 116, 308, 364, 68, 4, 30, ..., 136, 8, 60, ..., 544, 32, 240, ...

Оказывается, степени двойки в полученной последовательности встречаются только с простыми показателями: 22, 23, 25, ..., и можно проверить, что данная последовательность будет содержать в порядке возрастания все степени двух с простыми показателями.

Заметим, что для получения 22 из исходного числа 2 потребовалось 19 шагов программы, и при этом три раза происходило умножение на дробь 13/11.

А сколько раз придется выполнить умножение на 13/11 при переходе от исходного числа 2 к 2111119?

 

 

Задачу решили: 3
всего попыток: 11
Задача опубликована: 28.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

 

Рассмотрим построение последовательности графов Серпинского:

  • Граф Серпинского первого порядка S1 представляет собой равносторонний треугольник (три вершины и три соединяющих их ребра).
  • Граф Серпинского  Sn+1 порядка n+1 представляет собой объединение трех графов Sn, имеющих попарно общую вершину, как показано на рисунке:

 eu312-1.gif

Пусть C(n) — количество циклов, проходящих через каждую вершину  Sn ровно один раз. Например, C(3)=8, поскольку граф  S3 позволяет построить ровно 8 подобных циклов, как показано на рисунке: 

eu312-2.gif

Легко проверить, что 

C(1) = C(2) = 1

C(5) = 71328803586048

C(10 000) mod 108 = 37652224

C(10 000) mod 710 = 221100305

(Здесь a mod b означает остаток от деления a на b.)

Найдите C(C(C(10 000))) mod 710.

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 04.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим игру на прямоугольной клетчатой доске. Одна клетка доски не занята, на остальных стоят фишки. Каждым ходом игрок передвигает на свободную клетку одну из соседних (по вертикали или горизонтали) фишек. В начале игры пустая клетка находится в правом нижнем углу, в левом верхнем углу находится красная фишка, а на остальных клетках стоят синие фишки. Цель игры — переместить красную фишку в правый нижний угол за наименьшее количество ходов. На рисунке ниже показана последовательность ходов для доски 2 х 2.

eu313-1.gif

Пусть S(m,n) -минимальное количество ходов, необходимое для перемещения красной фишки в правый нижний угол для доски m х n. Можно проверить, что S(5,4) = 25.

eu313-2.gif

Существует всего 256 различных досок с сторонами m и n, не превышающими 100, для которых S(m,n) является квадратом натурального числа.

Подсчитайте количество досок со сторонами m и n, не превышающими 1010, для которых S(m,n) является квадратом натурального числа.

Задачу решили: 14
всего попыток: 29
Задача опубликована: 18.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Shamil

 eu315.gif

Сэм и Макс решили сделать из электронных часов прибор для демонстрации последовательности математических вычислений. Для испытания они запрограммировали его на расчет однозначной суммы цифр натуральных чисел. Напомним, что для вычисления однозначной суммы цифр суммируют все десятичные цифры числа, затем все десятичные цифры результата, и так далее, пока не получится однозначное число.

Когда в прибор передают очередное число, оно отображается индикатором, затем отображаются все промежуточные значения, и, наконец, - результат.

Например, если взять число 137, индикатор покажет последовательность "137"→"11"→"2", а затем погаснет до прихода нового числа.

Каждая цифра на индикаторе состоит из нескольких отрезков, как показано на рисунке.

Например, цифра "8" использует семь отрезков – четыре вертикальных и три горизонтальных, цифра "1" состоит из двух вертикальных, а именно, правого верхнего и правого нижнего, а цифра "4" – из четырех отрезков: левого верхнего, правого верхнего и правого нижнего вертикальных и горизонтального, лежащего посередине.

Индикатор потребляет электроэнергию, только когда отрезки включаются или выключаются. Так, включение или выключение числа 2 требует пяти единиц энергии, а числа 7 – четырех единиц энергии.

Сэм и Макс предложили разные конструкции прибора.

Работа прибора Сэма показана на картинке слева. Когда  этот прибор получает число 137, оно отображается на индикаторе, затем полностью гаснет, затем прибор показывает число 11, которое также гаснет, и, наконец, загорается число 2, которое тоже гаснет

В таблице приведен расчет энергопотребления прибора Сэма для числа 137.

"137":(2 + 5 + 4) ?× 2 = 22 переключений ("137" включается и выключается).

"11":(2 + 2) × 2 = 8 переключений ("11" включается и выключается).

"2":(5) × 2 = 10 переключений ("2" включается и выключается).

Всего получается 40 переключений и, соответственно, тратится 40 единиц энергии.

Прибор Макса (изображен справа) работает по-другому. Он не выключает каждый раз весь индикатор, а выбирает только те отрезки, которые не понадобятся для следующего числа.

Вот, как он будет работать с числом 137:

"137":2 + 5 + 4 = 11 переключений (включение трех цифр числа "137"), 7 переключений (выключение отрезков, не нужных для числа "11"). 0 переключений (число "11" уже и так горит)

"11":3 переключения (выключение первой единички и нижней части второй единички; верхняя часть остается гореть, поскольку она нужна для цифры "2").

"2":4 переключения (включение оставшихся отрезков цифры "2"), 5 переключений (выключение цифры "2").

Итого: 30 переключений.

Понятно, что прибор Макса тратит меньше энергии. Так, при подсчете однозначной суммы цифр для числа 137 экономия составляет 10 единиц энергии.

Найдите общую экономию энергии при подсчете однозначной суммы цифр для всех простых чисел, не превышающих  2×107.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 18.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Shamil

Обозначим через N(i) наименьшее натуральное число n,  факториал которого n! делится на (i!)1234567890 .

Сумма N(i) для всех составных натуральных i, не превышающих 1000, равна 520804933959105.

Найдите сумму N(i) для всех составных натуральных i, не превышающих 1 000 000. В качестве ответа укажите 18 младших разрядов результата.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.