img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 23
Задача опубликована: 07.02.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

Есть N2 ферзей N разных определённых цветов, по N ферзей каждого цвета. Обозначим как X(N) количество способов расставить все эти ферзи на шахматной доске размера N на N так, чтобы ферзи одного цвета не находились под ударом друг друга. Чему равна сумма X(3) + X(4) + X(5) + X(6) + X(7) + X(8) + X(9) + X(10)? (Координаты клеток доски, а также цвета ферзей, однозначно определены, поэтому разные позиции, подучающиеся одна от другой поворотом, симметрическим отображением или сменой цветов, считаются разными).

Задачу решили: 11
всего попыток: 17
Задача опубликована: 10.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Пусть (x1, x2, ... , xm) – такой набор положительных вещественных чисел, для которого выполняется условие x12 + x22 + ... + xm2 = m, а произведение Pm = x1 * x22 * ... * xmm принимает максимальное значение. Можно проверить, что [P10] = 64 (здесь скобки [ ] означают целую часть числа).
А чему равно [P25]?

Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

Задачу решили: 10
всего попыток: 17
Задача опубликована: 21.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число называется свободным от квадратов, если оно не делится ни на один квадрат простого числа. Например, числа 1, 2, 3, 5, 6, 7, 10, 11 свободны от квадратов, а числа 4, 8, 9, 12 - нет.
Сколько свободных от квадратов чисел не превышает 330?

Задачу решили: 3
всего попыток: 3
Задача опубликована: 28.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим граф, составленный из блоков A и B, показанных на рисунке:

A B

Блоки соединяются вдоль вертикальных ребер в различном порядке, например, вот так:

Вершины графа будем раскрашивать, используя не более c цветов таким образом, чтобы связанные ребром вершины были окрашены в разные цвета.

Теперь подсчитаем, сколько разноцветных графов можно составить, используя a блоков A, b блоков B и не более c цветов.
Используя один блок A и три цвета, можно получить 24 различных графа. (a=1, b=0, c=3)
Используя два блока B и четыре цвета, можно получить 92928 различных графа. (a=0, b=2, c=4)
Используя два блока A, два блока B и три цвета, можно получить 20736 различных графа. (a=2, b=2, c=3)
А сколько различных графов можно получить, используя не более c=2011 цветов и 100 блоков A или B (a+b=100), так, чтобы a и b были четными числами?
В качестве ответа укажите 8 последних цифр результата.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Будем называть треугольник шестидесятиградусным, если он имеет хотя бы один угол, равный 60 градусам, а длины его сторон выражаются целыми числами.
Обозначим через r радиус вписанной в такой треугольник окружности.
Существует 1580 различных шестидесятиградусных треугольников с r ≤ 100.
Обозначим через T(n) количество различных шестидесятиградусных треугольников с r ≤ n.
Тогда T(100) = 1580T(1000) = 26231 и T(10000) = 394553.
Найдите T(2000000).

Задачу решили: 22
всего попыток: 36
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Kruger

Какое наименьшее число N можно представить в виде произведения N = A?B ровно 64 способами? Произведения A?B и B?А считаются одним способом, все числа натуральные.

Задачу решили: 9
всего попыток: 26
Задача опубликована: 21.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом:

u(0) = 109
u(n+1) = f(u(n))

Найдите u(1018).

Задачу решили: 2
всего попыток: 3
Задача опубликована: 28.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем некоторое вещественное число x, и будем рассматривать его рациональные приближения, записывая их в виде несократимой дроби p/q.
Для данного x назовем наилучшим приближением с максимальным знаменателем d такое рациональное число r/s, для которого
1. s ≤ d
2. для любого лучшего рационального приближения p/q знаменатель q будет больше, чем d (из |x-p/q|<|x-r/s| следует q > d).
Как правило, у вещественных чисел имеется только одно наилучшее приближение с выбранным максимальным знаменателем. Однако есть и исключения. Например, число 9/40 имеет два наилучших приближения для максимального знаменателя 1/6, а именно 1/4 и 1/5. Если хотя бы для одного максимального знаменателя число имеет два различных наилучших приближения, мы будем называть такое число двойственным. Ясно, что все двойственные числа являются рациональными.
Сколько существует двойственных чисел x = p/q, 1/30 ≤ x < 1/20, у которых знаменатель q не превышает 108?

Задачу решили: 2
всего попыток: 58
Задача опубликована: 30.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображен большой круг. Его радиус равен 10000.

Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга.

Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Найдите суммарную площадь всех построенных таким образом кругов (кроме одного исходного круга самого большого размера), радиус которых больше 1. Результат округлите до целого.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.