img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 31
Задача опубликована: 09.04.11 14:01
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Рассмотрим числа, обладающие следующими тремя свойствами:

  1. Число представимо в виде p3q2, где p и q - различные простые числа (например, 72, 200, 500)
  2. Число содержит подстроку "200" в своей десятичной записи (например, 200, 1200, 1202005657)
  3. Изменив в десятичной записи числа одну цифру, невозможно получить простое число (например, 200, 325, 1268)

Первые два числа, удовлетворяющие всем трем условиям – это 200 и 1992008. Сумма первых двух чисел, обладающих одновременно свойствами 1, 2 и 3 равна 1992208.

Найдите сумму первых двухсот чисел, обладающих одновременно свойствами 1, 2 и 3.

Задачу решили: 6
всего попыток: 15
Задача опубликована: 04.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Для числового множества A обозначим через sum(A) сумму его элементов.
Например, если множество B = {1,3,6,8,10,11}, то sum(B)= 1+3+6+8+10+11=39.

Вычислим суммы для всех 20 трехэлементных подмножеств множества B:
sum({1,3,6}) = 10,
sum({1,3,8}) = 12,
sum({1,3,10}) = 14,
sum({1,3,11}) = 15,
sum({1,6,8}) = 15,
sum({1,6,10}) = 17,
sum({1,6,11}) = 18,
sum({1,8,10}) = 19,
sum({1,8,11}) = 20,
sum({1,10,11}) = 22,
sum({3,6,8}) = 17,
sum({3,6,10}) = 19,
sum({3,6,11}) = 20,
sum({3,8,10}) = 21,
sum({3,8,11}) = 22,
sum({3,10,11}) = 24,
sum({6,8,10}) = 24,
sum({6,8,11}) = 25,
sum({6,10,11}) = 27,
sum({8,10,11}) = 29
.
Некоторые из этих сумм встречаются несколько раз, а некоторые – лишь однажды.
Выпишем в порядке возрастания все уникальные суммы (встречающиеся ровно один раз):
10,12,14,18,21,25,27,29
Наибольшая разница между соседними числами в этой последовательности равна 4 (она встречается в последовательности дважды: 4=18-14 и 4=25-21). Обозначим найденную таким образом величину как D(A,m), где A – исходное множество, а m – количество элементов в подмножестве. Таким образом, D(B,3)=4.

Теперь рассмотрим множество S, состоящее из 120 элементов:
S = {12, 22, ... , 1202}.
Множество S имеет 96614908840363322603893139521372656 подмножеств, состоящих из 60 элементов. Найдите D(S,60) – наибольшую разность между последовательными уникальными суммами 60-элементных подмножеств множества S.

Задачу решили: 6
всего попыток: 6
Задача опубликована: 06.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч.
На рисунке показан путь луча, который прошел сквозь щель в вершине C, 11 раз отразился от зеркал и вышел из треугольника через ту же вершину C. Существует всего 2 пути, по которым луч может войти и выйти через вершину C, испытав при этом 11 отражений: один – это тот, что изображен на рисунке, а другой – направленный ему навстречу.

Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Существует 40 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал 697 раз и выйти из треугольника через ту же вершину.
Существует 9355 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 700 раз и выйти из треугольника через ту же вершину.
Сколько существует траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 100000 раз и выйти из треугольника через ту же вершину.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 18.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство
4t = 2t + k,
а числа 4t и 2t были целыми.
Наименьшее такое k равно двум:
41 = 21 + 2,
а следующее равно шести:
41,5849625... = 21,5849625... + 6.

Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет.
Обозначим через P(m) долю таких k ≤ m, для которых  t – целое. Например, P(6) = 1/2. Ниже приведено несколько значений P(m):

   P(5) = 1/1
   P(10) = 1/2
   P(15) = 2/3
   P(20) = 1/2
   P(25) = 1/2
   P(30) = 2/5
   ...
   P(180) = 1/4
   P(185) = 3/13

Найдите сумму всех m, для которых P(m)=1/7777.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 20.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте.

На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932.

Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).

Задачу решили: 7
всего попыток: 17
Задача опубликована: 22.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg

Булеву функцию с булевыми аргументами можно задать при помощи таблицы истинности. Ниже приведены таблицы истинности для трех функций с двумя аргументами: для конъюнкции (AND), для импликации (=>) и для строгой дизъюнкции (XOR).

x y x AND y
0 0 0
0 1 0
1 0 0
1 1 1
x y x x=>y y
0 0 1
0 1 1
1 0 0
1 1 1
x y x XOR y
0 0 0
0 1 1
1 0 1
1 1 0

Подсчитайте, сколько существует различных булевых функций с шестью аргументами τ(a, b, c, d, e, f), для которых выполняется условие
τ(a, b, c, d, e, f) AND τ(b, c, d, e, f, a XOR (b => c)) = 0
при  любых сочетаниях (a, b, c, d, e, f)?

Задачу решили: 14
всего попыток: 17
Задача опубликована: 27.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Для натурального числа n обозначим через σ2(n) сумму квадратов его делителей. Например,
σ2(6) = 12 + 22 + 32 + 62 = 50
σ2(25) = 12 + 52 + 252 = 651
Число 50 начинается с цифры 5, а число 651 – с цифры 6.
Найдите сумму таких n из интервала 0 < n < 64 000 000, для которых σ2(n) начинается с цифры 6.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 29.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

В данной задаче мы будем рассматривать "ориентированные" тетраэдры, координаты вершин которых имеют вид:
{(x, y, z), (x+a, y, z), (x,y+a,z), (x,y,z+a)}, a>0, и x,y,z,a – целые числа. Объем такого тетраэдра равен a3/6.
Если мы захотим найти общий объем объединения нескольких ориентированных тетраэдров, то, возможно, он окажется меньше суммы их объемов, если некоторые из тетраэдров пересекаются.
Построим последовательность ориентированных тетраэдров T1, T2, …, Tn,… следующим образом:
xn = S4n-3 (mod 10000)
yn = S4n-2 (mod 10000)
zn = S4n-1 (mod 10000)
an = 1+S4n (mod 699),
а Sk  получены при помощи генератора случайных чисел Фибоначчи с запаздываниями:
При 1≤k≤55, Sk = [100003 - 200003k + 300007k3] (mod 1000000), и при 56≤k, Sk = [Sk-24  + Sk-55 ] (mod 1000000).
(p (mod q) означает остаток от деления p на q.)
Таким образом, у тетраэдра T1 x =7, y=53, z=183, a=655, у тетраэдра T2 x =863, y=1497, z=2383, a=112 и т.д.
Объем объединения первых 300 ориентированных тетраэдров T1 … T300 равен 3999927695 (по счастливому совпадению это число оказалось целым).
Найдите объем объединения первых 50000 ориентированных тетраэдров T1 … T50000 (благодаря еще одному счастливому совпадению это число тоже целое).

Задачу решили: 5
всего попыток: 5
Задача опубликована: 02.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Когда звенит колокольчик, блохи одновременно прыгают.
Блоха, сидящая в углу доски, приземляется на одну из двух соседних клеток с равной вероятностью 1/3 и с такою же вероятностью 1/3 возвращается на прежнее место.
Блоха, сидящая у края доски, приземляется на одну из трех соседних клеток с равной вероятностью 1/4 и с такою же вероятностью 1/4 возвращается на прежнее место.
Блоха, сидящая во внутренней части доски, приземляется на одну из четырех соседних клеток с равной вероятностью 1/5 и с такою же вероятностью 1/5 возвращается на прежнее место.
Найдите математическое ожидание количества незанятых блохами клеток после пятидесяти звонков. Результат умножьте на миллион и округлите до ближайшего целого. 

Задачу решили: 16
всего попыток: 18
Задача опубликована: 04.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Напомним, что функцией Эйлера φ(n) для натуральных n называют количество натуральных чисел, не превышающих n и взаимно простых с n.
Взяв некоторое число n,  будем строить цепочку n, φ(n), φ(φ(n)), φ(φ(φ(n)))…, пока не получим 1. Например, начав с 5, получим последовательность 5,4,2,1, содержащую 4 члена. Ниже приведены все последовательности, содержащие 4 члена.

5,4,2,1
7,6,2,1
8,4,2,1
9,6,2,1
10,4,2,1
12,4,2,1
14,6,2,1
18,6,2,1

Ровно две из них начинаются с простых чисел.
Найдите сумму всех простых чисел, не превышающих 40000000, с которых начинается последовательность длиной 25 и более членов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.