Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
9
всего попыток:
19
Найдите максимально возможную площадь десятиугольника, стороны которого равны 1,2,3,4,5,6,7,8,9,10. Ответ умножьте на 100000 и округлите до ближайшего целого числа.
Задачу решили:
3
всего попыток:
3
Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Задачу решили:
5
всего попыток:
9
В лазерной физике используют системы зеркал, которые действуют как линии задержки для проходящего лазерного луча. Луч входит в систему, многократно отражается от зеркал и, в конце концов, выходит обратно. Мы рассмотрим такую линию задержки, имеющую форму эллипса с уравнением 4x2 + y2= 100. В верхней части эллипса сделано отверстие −0.01 ≤ x ≤ +0.01 для входа и выхода луча. В нашей задаче луч направляется из точки с координатами (0,0;10,1) внутрь эллипса, где испытывает первое отражение в точке (1,4;-9,6), Луч отражается по обычному закону "угол падения равен углу отражения". Иначе говоря, падающий и отраженный луч образуют с нормалью в точке падения равные углы. На рисунке слева красной линией показана траектория луча к первым двум точкам отражения. Синим обозначена касательная к эллипсу в первой точке отражения. Наклон касательной в точке эллипса с координатами (x,y) можно найти по формуле: m = −4x/y. Нормаль перпендикулярна касательной в точке падения. На анимированной картинке справа показаны первые 10 отражений луча. Какой длины путь проделает луч внутри эллиптической системы задержки? Результат округлите до целого.
Задачу решили:
5
всего попыток:
7
На рисунке изображена решетка размером 3x2, состоящая из вертикальных, горизонтальных и наклонных отрезков. Для данной решетка существует 37 прямоугольников, вершины которых лежат на узлах решетки. Есть пять решеток меньшего размера: 1x1, 2x1, 3x1, 1x2 и 2x2 (каждое из измерений этих решеток не превосходит соответствующего измерения нашей решетки 3x2). Подсчитаем, сколько прямоугольников можно разместить на узлах этих решеток:
Задачу решили:
6
всего попыток:
7
Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:
С учетом различных ориентаций можно насчитать шесть видов тримино: Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом: При этом симметричные покрытия мы считали различными. Сколько существует подобного рода покрытий для прямоугольника 8 х 15?
Задачу решили:
5
всего попыток:
25
Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек. Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков. Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим три отрезка:
Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения. s0 = 290797 Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
Задачу решили:
2
всего попыток:
4
Рассмотрим невыпуклый четырехугольник ABCD с диагоналями AC и BD. В каждой вершине входящая в нее диагональ образует два угла со сторонами четырехугольника. Например, в вершине A это будут углы BAC и CAD. Измерим величину этих восьми углов в градусах. Для некоторых четырехугольников полученные восемь чисел окажутся целыми. Будем называть такие четырехугольники невыпуклыми целыми четырехугольниками. Пример невыпуклого целого четырехугольника легко получить, если расположить точки A, B и C в вершинах правильного треугольника, а точку D в его центре. Другой пример получим, задав CAB=85°, BAD=55°, ABD=15°, CBD=50°, ACB=30°, BCD=25°, ADB=110°, BDC=105°.
(В расчетах можно считать угол целым, если его величина совпадает с целым числом с точностью до 10-9 градуса.)
Задачу решили:
5
всего попыток:
6
Будем называть треугольник шестидесятиградусным, если он имеет хотя бы один угол, равный 60 градусам, а длины его сторон выражаются целыми числами.
Задачу решили:
2
всего попыток:
58
На рисунке изображен большой круг. Его радиус равен 10000. Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга. Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|