Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
95
Рассмотрим игру «монополия». Игровое поле следующее:
Движение происходит следующим образом: каждый игрок своим ходом кидает два 6-гранных кубика, и сдвигает фишку на число клеток в сумме выпавших на кубиках. Исключением является случай, когда игрок три раза подряд выкидывает дубль (одинаковые числа на кубиках), в таком случае он попадает на клетку тюрьмы (JAIL). Также, если игрок сдвинув фишку попадает на «G2J», то он перемещается в тюрьму. Игрок начинает с клетки GO и каждый ход бросает пару кубиков и свдигает фишку на сумму чисел выпавших на кубиках по часовой. Если бы не было дополнительных правил — ожидаемым было бы, что вероятности попадения на каждую клетку после броска равна 1/40. Но попадания на клетки G2J(Go to jail, отправляйтесь в тюрьму), CC(извещение) и CH(шанс) изменяет это распределение. Также существует правило, согласно которому если игрок выкидывает три раза дубль (одинаковые значения на кубиках), то вместо третьего хода он попадает в тюрьму. Вначале игры все карты CC и CH перетасованы. Когда игрок становится на одну из таких клеток верхняя карта колоды снимается и после использования кладется под низ. В каждой стопке по 16 карт, часть из которых содержит предписания о перемещении на какую-то из клеток карты, остальные нам не важны. Вот эти карты:
Ваша задача определить вероятность закончить ход на каждой из клеток после очередного броска кубиков. Очевидно что вероятность для Jail наибольшая, G2J нулевая. Считается что игрок не задерживается в тюрьме. Пронумеруем все клетки от 0(GO) до 39(H2) и найдем вероятности для каждой клетки. Три макимальные вероятности получаются для клеток JAIL(10), 6.24%; E3(24), 3.18% и GO(0), 3.09%. В какой-то момент вы потеряли кубик и потому решили обходиться для игры монеткой, подкидывая ее три раза и считая что орел - 1, а решка - 2. При этом "дублем" считается выпадения все три раза либо орла, либо решки. Найдите при таком способе игры 5 наиболее популярных клеток и в ответе укажите сумму их номеров.
Задачу решили:
12
всего попыток:
13
Игра проводится по следующим правилам. Вначале в коробку кладут два шара - синий и красный. За ход предлагается вынуть наугад один из шаров. Затем вынутый шар возвращается в коробку и вдобавок в коробку кладется два шара красного цвета. Таких ходов делается n. Игра считается выигранной, если количество вынутых синих больше чем вынутых красных. Для n=3 вероятность выиграть равна 5/24. Если игра стоит 1 рубль, то максимальный целый выигрыш, который крупье может предложить, чтобы в среднем выигрывать, 4 рубля. Найдите какой максимальный выигрыш можно предложить для аналогичной игры с 13 ходами.
Задачу решили:
6
всего попыток:
25
Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.
Задачу решили:
5
всего попыток:
5
На клетчатой доске 30 х 30 сидит 900 блох, по одной блохе в каждой клетке.
Задачу решили:
3
всего попыток:
6
Братья-математики Коля и Даня решили поиграть по следующим правилам.
Задачу решили:
2
всего попыток:
2
Мальчику подарили развивающую игру-пазл "числовая змейка", состоящую из 40 фигурных элементов, которые можно собирать цепочкой один за другим и только в определенной последовательности. Элементы перенумерованы в соответствии с этой последовательностью числами от 1 до 40. Каждый вечер папе приходится собирать элементы, разбросанные по полу в детской. Он подбирает их по одному случайным образом и сразу ставит на нужное место. При этом они образуют несколько готовых отрезков из нескольких идущих подряд элементов, должным образом соединенных между собой. Понятно, что сначала, до того как папа начинает выкладывать змейку, таких отрезков нет, когда он кладет первый элемент, получается один отрезок, состоящий из единственного элемента, а в конце работы остается также один отрезок, состоящий из всех 40 элементов. По ходу дела количество готовых отрезков может увеличиваться и уменьшаться, достигая в какой-то момент максимума. Вот пример его работы:
Обозначим через M максимальное количество готовых отрезков, которое достигалось в процессе сборки. В таблице ниже приведено количество вариантов сборки, при которых наблюдаются максимальные числа отрезков M для змейки, состоящей из 10 элементов.
Как видно, наиболее вероятное значение M равно 3, и оно реализуется 1815264 различными способами, а 181526 — это первые шесть значащих цифр данного числа.
Задачу решили:
4
всего попыток:
10
Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
Задачу решили:
4
всего попыток:
11
При изготовлении микросхемы, состоящей из n транзисторов, образовалось k микродефектов. Дефекты распределены случайным образом, каждый дефект оказался в одном из транзисторов, и в любом транзисторе могло оказаться любое количество дефектов. Если в каком-либо транзисторе оказалось три или более дефектов, такой транзистор не работает, и вся микросхема идет в брак. Обозначим через E(n,k) математическое ожидание количества транзисторов, содержащих дефекты, в годной микросхеме. Например, E(13,3)≈2.78571... Найдите E(1000000,20000), умножьте на 100000, а результат округлите до целого.
Задачу решили:
4
всего попыток:
6
Круглое болото разбито на секторы, перенумерованные по часовой стрелке числами от 1 до 500. Лягушка, сидящая в одном из секторов, может прыгнуть в один из двух соседних секторов с равной вероятностью. Перед тем, как прыгнуть, лягушка квакает. Если номер сектора, в котором сидит лягушка, является простым числом, она с вероятностью 2/3 квакает "P" и с вероятностью 1/3 квакает "N". Если номер сектора, в котором сидит лягушка, не является простым числом, она с вероятностью 2/3 квакает "N" и с вероятностью 1/3 квакает "P". Предположим, что в начальный момент лягушка может занимать любой из секторов с равной вероятностью. Подсчитайте вероятность того, что после 15 прыжков лягушачью песнь можно будет закодировать последовательностью PPPPNNPPPNPPNPN. Результат представьте в виде несократимой дроби, а в качестве ответа укажите ее числитель.
Задачу решили:
0
всего попыток:
0
"Передур же поехал дальше долиной реки, вдоль которой расстилались луга. И на одном берегу реки он увидел стадо белых овец, а на другом - стадо черных. И как только одна из белых овец блеяла, черная овца переплывала реку и становилась белой. Когда же блеяла черная овца, одна из белых овец переплывала реку и делалась черной" Первоначально каждое стадо состоит из n овец. Каждая овца, независимо от масти, может заблеять в очередной раз. Передур стремится максимизировать количество черных овец. Для этого он может прогонять прочь любое количество белых овец, но делать это он может лишь после того, как заблеяла очередная овца и до того, как овца с противоположного берега вошла в реку.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|