Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
87
всего попыток:
141
В 2009 году в России имеются банкноты достоинством 5, 10, 50, 100, 500, 1000 и 5000 рублей. Сколько существует способов при помощи банкнот составить сумму 16 тысяч рублей.
Задачу решили:
90
всего попыток:
208
Составьте число из идущих подряд простых чисел: 23571113171923... Найти сумму цифр находящихся на местах 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001.
Это открытая задача
(*?*)
В матрице размера 10x10 в каждой строке стоят целые числа от 0 до 9, при этом числа в строках не повторяются. Найти наибольший определитель такой матрицы.
Задачу решили:
26
всего попыток:
57
Рассмотрим такие диофантовы уравнения: x2-Dy2=1. Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое: 6492-13*1802=1. Легко показать, что для D - полного квадрата решений не существует. Рассмотрим минимальные решения D <= 10: 32 - 2*22=1; 22 - 3*12=1; 92 - 5*42=1; 52 - 6*22=1; 82 - 7*32=1; 32 - 8*12=1; 192 - 10*62=1. Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10. Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.
Задачу решили:
45
всего попыток:
61
Найти минимальное n, такое что в записи n! встречаются все двухзначные числа.
Задачу решили:
18
всего попыток:
44
Строка состоит из 33 символов A и B. При этом в каждой подстроке, длина которой больше 9, количество символов A как минимум на 3 больше количества символов B. Сколько таких строк существует?
Задачу решили:
11
всего попыток:
37
Дан список слов в приложении. Среди них есть некоторые слова-анаграммы. То есть пары слов, отличающиеся только порядком букв. Такие как СОСНА и НАСОС. Оказывается, что при некоторой подстановке букв цифрами (одинаковым буквам соответствуют одинаковые цифры, разным - разные), слова пары могут одновременно превратиться в пентагональные числа (представимы как n(3n-1)/2). Найти среди всех таких слов и соответствующих им чисел, наибольшее число.
Задачу решили:
22
всего попыток:
34
В коробке находятся красные и синие шары. Если всего шаров 21, 6 красных и 15 синих, вероятность, взяв наугад два шара, вытащить 2 синих равна ½. Следующее такое сочетание шаров с вероятностью вытащить оба синих шара ½ — 35 красных и 85 синих. Найти все сочетания шаров, таких что всего их в коробке не более 1012. Сколько всего в сумме шаров во всех сочетаниях?
Задачу решили:
11
всего попыток:
30
Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее. Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.
Задачу решили:
10
всего попыток:
19
Запишем 1000 чисел подряд: 1 2 3 4 5 ... 999 1000 Между числами можно поставить либо "+" (плюс), либо "-" (минус). При некоторых комбинациях в результате вычисления может получиться ноль. Какое количество таких комбинаций существует?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|