Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
95
Функция Эйлера φ(n) определяется так: для любого натурального n>1 её значение равно количеству натуральных чисел, меньших n и взаимно простых с n, по определению φ(1)=1, в частности φ(9)=6 (числа 1, 2, 4, 5, 7, 8 - взаимно просты с числом 9). Значение функции φ(87109) = 79180 интересно тем, что оно может быть получено перестановкой цифр в аргументе функции 87109. Найти сумму всех аргументов, меньших 1 миллиона, обладающих таким же свойством.
Задачу решили:
20
всего попыток:
31
k-угольные числа задаются формулой: Pn(k)=n+(k-2)n(n-1)/2. Имеется уникальный набор k-угольных четырехзначных чисел: 8128, 2882, 8281, который обладает следующими свойствами. 1. Две последние цифры первого числа являются первыми цифрами второго, две последние цифры второго числа являются первыми цифрами третьего и, две последние цифры третьего числа являются первыми цифрами первого. 2. Числа 8128=P127(3), 8281=P91(4), 2882=P44(5) являются k-угольными с последовательными номерами k=3, 4, 5. Найдите 7 k-угольных четырехзначных чисел, которые обладают описанными свойствами для k=3, 4, ..., 9. Чему равен максимум их суммы?
Задачу решили:
37
всего попыток:
55
Из числа 41063625=3453 перестановкой цифр можно получить еще два числа, которые являются кубами: 56623104=3843 и 66430125=4053. Найти наименьшее число, являющееся четвертой степенью натурального числа, перестановкой цифр в котором можно получить еще ровно 2 различных числа, являющихся четвертыми степенями.
Задачу решили:
23
всего попыток:
89
Назовём число a представимым n-ной степенью, если существует натуральные числа x и n, такие что a = xn. Найдите количество n-значных чисел, которые являются представимыми степенью n или n/2. Например, четырехзначное число 1024 представимо как вторая степень (322), а число шестизначное число 531441 представимо как шестая степень (96).
Задачу решили:
45
всего попыток:
84
Найти сумму всех n-значных натуральных чисел, являющихся степенями порядка 2n некоторых натуральных чисел.
Задачу решили:
28
всего попыток:
70
Найти наименьшее натуральное число n для которого 2n + 3 делится на простое число 625406681329.
Задачу решили:
63
всего попыток:
85
Найти наименьшее натуральное число, которое при делении на 123 дает остаток 12, при делении на 239 дает остаток 57, при делении на 361 - остаток 239, при делении на 566 - остаток 361, а при делении на 1237 - остаток 566.
Задачу решили:
22
всего попыток:
37
Вершинам правильного пятиугольника приписаны целые числа a, b, c, d, e, при этом a + b + c + d + e > 0. За один ход можно сделать следующую операцию: выбрать вершину, которой приписано отрицательное число, поменять у него знак и прибавить его к соседям. Иными словами, если числа x, y, z приписаны трем последовательным вершинам и y < 0, то их можно заменить на x + y, -y, z + y. Можно доказать, что при любом наборе начальных чисел рано или поздно получится набор, состоящий только из неотрицательных чисел. Например, пусть изначальные числа -1, 2, 3, 4, -5. Их сумма больше нуля. Можно сделать максимум 10 операций, прежде чем все числа станут неотрицательными. Требуется найти такой набор начальных чисел, по модулю не превосходящих 10, для которого существует последовательность операций максимальной длины. В качестве ответа выведите максимальное число операций.
Задачу решили:
12
всего попыток:
46
Известно, что все числа, начиная с некоторого, можно представить в виде 2229013x + 3875743y + 2390041z, где x, y и z - целые неотрицательные числа. Чему равно наибольшее натуральное число, которое нельзя представить в таком виде?
Задачу решили:
46
всего попыток:
55
Рассмотрим десятичную запись числа √2=1.41421356237... Число 421 является первым трехзначным простым числом, встречающимся в этой записи. Число 135623 - первым шестизначным простым числом. Чему равно первое 12-значное простое число, встречающееся в десятичной записи числа √2?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|