img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 51
Задача опубликована: 12.06.09 08:27
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Прямоугольная сетка 3 × 2 на рисунке содержит 18 прямоугольников:

 

Определим функцию f(a,b) как число прямоугольников, содержащихся в сетке a × b.

Сколько различных значений принимает f(a,b) при 0<a<1000 и 0<b<1000?

Задачу решили: 25
всего попыток: 99
Задача опубликована: 15.06.09 21:36
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Пусть S < 109. Найти наибольшее значение S, для которого существует максимальное количество прямоугольников с целочисленными сторонами и площадью равной S.

Задачу решили: 47
всего попыток: 115
Задача опубликована: 18.06.09 15:03
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: provdk (Николай Егоров)

Номера кредитной карты состоят из 16 цифр (все цифры не могут быть нулями одновременнно). Номер является счастливым, если сумма первых восьми цифр равна сумме последних восьми. Сколько всего таких счастливых номеров?

Задачу решили: 11
всего попыток: 24
Задача опубликована: 30.06.09 01:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На каждой из 6 граней кубика изображена одна из цифр от 0 до 9. Так же и на другом кубе. Ставя два кубика рядом можно составить множество двузначных чисел.

Например число 64 будет составлено так:

 

Подобрав цифры на гранях, можно отобразить все числа которые можно получить суммой двух кубов меньшие сотни ( n = a3 + b3, n < 100, a и b - натуральные). Эти числа: 02, 09, 16, 28, 35, 54, 65, 72, 91. Например, с помощью наборов {5, 4, 3, 2, 1, 0} и {9, 8, 5, 4, 3, 1} могут быть выложены все необходимые числа. При этом надо учесть, что цифры 6 и 9 выглядят одинаково и могут использоваться друг за друга, хотя наборы с этими цифрами считаются различными. Тогда как один и тот же набор цифр расположенный на гранях кубика иным образом считается тем же набором.

То есть,

{1, 2, 3, 4, 5, 6} и {3, 6, 4, 1, 2, 5} - одинаковые наборы;
{1, 2, 3, 4, 5, 6} и {1, 2, 3, 4, 5, 9} - различные наборы.

Сколько различных пар кубиков могут быть сложены во все числа представимые суммой пары кубов?

Задачу решили: 23
всего попыток: 33
Задача опубликована: 08.07.09 08:48
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: SemmZemm (Семён Марчук)

Составим последовательность чисел следующим образом:

Пусть первое число n, а каждое следующее - сумма квадратов цифр предыдущего числа в шестнадцатеричной системе отсчета. Оказывается, независимо от начального числа последовательность зациклится. Либо зациклится числом 1, либо циклом содержащим 50 (3216).

Например: 5 → 19 → 52 → 1D → AA → C8 → D0 → A9 → B5 → 92 → 55 → 32 → A9 → → B5 → 92 → 55 → 32;

2 → 4 → 10 → 1 1

Для всех начальных номеров n последовательности меньших 100000016 определите содержит ли последовательность 50 (3216) и в ответе укажите количество последовательностей содержащих 50 (3216).

Задачу решили: 21
всего попыток: 55
Задача опубликована: 12.07.09 08:05
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Используя цифры 1, 2, 3, 4 и знаки арифметических действий +, -, * и /, а также скобки, можно получить некоторое множество чисел. Склеивать цифры нельзя (12 + 34 - не разрешено).

Например:

8 = (4 * (1 + 3)) / 2

14 = 4 * (3 + 1 / 2)

19 = 4 * (2 + 3) - 1

36 = 3 * 4 * (2 + 1)

В этом множестве цепочка максимальной длины из последовательных целых чисел - [-23, 28] равна 52.

Найдите 4 различных цифры (отличных от нуля) которые дадут цепочку из последовательных целых наибольшей длины. В ответе запишите эти цифры в порядке возрастания (для 1, 2, 3, 4 ответ был бы 1234).

Задачу решили: 14
всего попыток: 19
Задача опубликована: 13.07.09 00:37
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28:

28 = 22 + 23 + 24

С числом 17367 это можно проделать тремя способами:

17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34

17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами.

Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.

Задачу решили: 12
всего попыток: 17
Задача опубликована: 13.07.09 09:47
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} :

N = a1 + a2 + ... + ak = a1 × a2 × ... × ak.

Например, число 6 является 3-разложимым:

6 = 1 + 2 + 3 = 1 × 2 × 3.

Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6:

k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6

Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12.
Для 2k30 наибольшее из наименьших k-разложимых чисел равно 48.

Найти наибольшее из наименьших k-разложимых чисел для 2k12000.

Задачу решили: 21
всего попыток: 47
Задача опубликована: 16.07.09 15:38
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12.

Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу.

Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).

Задачу решили: 18
всего попыток: 44
Задача опубликована: 22.07.09 23:07
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Строка состоит из 33 символов A и B. При этом в каждой подстроке, длина которой больше 9, количество символов A как минимум на 3 больше количества символов B. Сколько таких строк существует?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.