img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 44
всего попыток: 151
Задача опубликована: 26.09.09 12:59
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество натуральных чисел представимых в виде nm, (n и m - натуральные, 1<n<100, 1<m<10) заканчивающихся на цифру, которая чаще всего встречается последней в десятичной записи.

Задачу решили: 9
всего попыток: 13
Задача опубликована: 28.09.09 09:12
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим четырехзначные простые числа с повторяющимися цифрами. Ясно, что все цифры не могут быть одинаковы: 1111 делится на 11, 2222 делится на 22, и т.д. Но есть девять четырехзначных простых чисел, содержащих три единицы:
1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111
Обозначим через M(n, d) максимально возможное количество повторяющихся цифр в n-значном простом числе, где d - повторяющаяся цифра. Пусть N(n, d) - количество таких чисел, а S(n, d) - их сумма.
Тогда M(4, 1) = 3 - максимальное количество единиц в четырехзначном простом числе, всего существует N(4, 1) = 9 таких чисел, а их сумма равна S(4, 1) = 22275. Оказывается, что при d = 0 в четырехзначном простом числе может быть не более M(4, 0) = 2 нулей, и N(4, 0) = 13.
Таким образом, мы получим следующие результаты для четырехзначных простых чисел:

Digit, d M(4, d) N(4, d) S(4, d)
0 2 13 67061
1 3 9 22275
2 3 1 2221
3 3 12 46214
4 3 2 8888
5 3 1 5557
6 3 1 6661
7 3 9 57863
8 3 1 8887
9 3 7 48073

Найдите сумму всех S(n, d) для 3 ≤ n ≤ 10 и 0 ≤ d ≤ 9.

Задачу решили: 19
всего попыток: 26
Задача опубликована: 02.10.09 10:01
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
Аналогично, убывающим числом будем называть такое натуральное число, цифры которого не возрастают слева направо, например 864431.
Оказывается, что возрастающие числа встречаются реже, чем убывающие. Так, среди первых ста натуральных чисел имеется 54 возрастающих и 64 убывающих (18 чисел, состоящих из одинаковых цифр, являются сразу же и возрастающими, и убывающими), а в первой тысяче натуральных чисел - 219 возрастающих и 283 убывающих.
Обозначим через R(n) отношение количества убывающих чисел к количеству возрастающих среди первых n натуральных чисел. Например, оказывается, что R(11)=11/10, R(1127)=11/9.
Найти наименьшее значение n, для которого R(n)=11/7.

Задачу решили: 18
всего попыток: 91
Задача опубликована: 02.10.09 10:04
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Найти минимальное натуральное n=a+b+c (натуральные a, b, c < 1000), для которого уравнения вида ax2+bx+c=0 имеют наибольшее количество целых решений (кратные решения считаются как одно).

Задачу решили: 17
всего попыток: 46
Задача опубликована: 07.10.09 16:33
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
Аналогично, убывающим числом будем называть такое натуральное число, цифры которого не возрастают слева направо, например 864431.
Оказывается, что возрастающие числа встречаются реже, чем убывающие. Так, среди первых ста натуральных чисел имеется 54 возрастающих и 64 убывающих (18 чисел, состоящих из одинаковых цифр, являются сразу же и возрастающими, и убывающими), а в первой тысяче натуральных чисел - 219 возрастающих и 283 убывающих.
Обозначим через R(n) отношение количества убывающих чисел к количеству возрастающих среди первых n натуральных чисел. Например, оказывается, что R(11)=11/10, R(1127)=11/9.
Найти R(n), где n – число, состоящее из 111 единиц (Оказывается, это целое число).

(Можно решить при помощи карандаша и бумаги)
Задачу решили: 62
всего попыток: 157
Задача опубликована: 09.10.09 07:35
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Mikha (Михаил Григорьев)

В ряд последовательно записаны квадраты всех чисел от 1 до 1000:

14916253649...

Далее выбираются комбинации из двух последовательных цифр, например, 14, 49 или 16. Определить сколько таких чисел являются четными.

Задачу решили: 13
всего попыток: 103
Задача опубликована: 12.10.09 12:43
Прислал: admin img
Вес: 2
сложность: 5 img
баллы: 500

В ряд последовательно записаны квадраты всех чисел от 1 до 1000:

14916253649...

Далее выбираются комбинации из трех и более последовательных цифр, например, 149, 1491 или 49162. Определить сколько таких чисел являются кубами натуральных чисел.

Задачу решили: 10
всего попыток: 12
Задача опубликована: 19.10.09 15:11
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

 

Замечание: Это более сложный вариант задачи 114.

Как и в задаче 114, будем рассматривать прямоугольные полоски, состоящие из n выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее mr клеток, а черные – не менее mb.

 

Обозначим через F(mr, mb,n) число способов, которым такая полоска может быть построена, например F(3, 2, 8)=14 (см. рисунок).

 

 

Кроме того, F(3, 2, 34)= 856506 и F(3, 2, 35)= 1309554.

Это означает, что n=35 – минимальное значение, при котором функция F(3, 2,n) превосходит миллион.

Аналогично, F(5, 3, 46) = 849735 и F(5, 3, 47)= 1172897, и 47 – первое значение n, при котором F(5, 3, n) больше миллиона.

Найдите минимальное значение n, при котором F(111, 100, n) > 1 000 000.

 

Задачу решили: 12
всего попыток: 32
Задача опубликована: 19.10.09 15:15
Прислал: morph img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найдите все натуральные x, y, z, такие что  x+y+z < 10000000x > y > z > 0 и x + y, x - y, x + z, x - z, y + z, y - z все являются полными квадратами. В ответ запишите сумму всех найденных чисел.

Задачу решили: 9
всего попыток: 13
Задача опубликована: 22.10.09 08:34
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В полоске, состоящей из пяти черных квадратов, будем заменять несколько идущих подряд клеток на прямоугольники разных цветов. При этом прямоугольники 2 × 1 будут красного цвета, 3 × 1 - зеленого, 4 × 1 - синего, а прямоугольник длиной 5 клеток окрасим в желтый цвет.

Используя красные прямоугольники, это можно сделать ровно семью способами:

 

Для зеленых прямоугольников есть три варианта:

 

Синие прямоугольники можно поставить только двумя способами:

А для желтых прямоугольников возможен один единственный вариант:

Итак, используя цветные прямоугольники какого-либо одного из имеющихся цветов, можно заменить часть черных квадратов в полоске длиной 5 единиц 7 + 3 + 2 + 1 = 13 способами.

Сколькими способами можно заменить цветными прямоугольниками часть черных квадратов в полоске длиной 50 единиц, если можно использовать цветные полоски только одного из имеющихся четырех цветов, и использован хотя бы один цветной прямоугольник? ("Смешивать" цвета нельзя, т.е. как и в примере, каждая полоска может содержать лишь один цвет, не считая черного).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.